Suppr超能文献

构建雪貂脑图谱。

Building the Ferretome.

作者信息

Sukhinin Dmitrii I, Engel Andreas K, Manger Paul, Hilgetag Claus C

机构信息

Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf Hamburg, Germany.

Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf Hamburg, Germany.

出版信息

Front Neuroinform. 2016 May 10;10:16. doi: 10.3389/fninf.2016.00016. eCollection 2016.

Abstract

Databases of structural connections of the mammalian brain, such as CoCoMac (cocomac.g-node.org) or BAMS (https://bams1.org), are valuable resources for the analysis of brain connectivity and the modeling of brain dynamics in species such as the non-human primate or the rodent, and have also contributed to the computational modeling of the human brain. Another animal model that is widely used in electrophysiological or developmental studies is the ferret; however, no systematic compilation of brain connectivity is currently available for this species. Thus, we have started developing a database of anatomical connections and architectonic features of the ferret brain, the Ferret(connect)ome, www.Ferretome.org. The Ferretome database has adapted essential features of the CoCoMac methodology and legacy, such as the CoCoMac data model. This data model was simplified and extended in order to accommodate new data modalities that were not represented previously, such as the cytoarchitecture of brain areas. The Ferretome uses a semantic parcellation of brain regions as well as a logical brain map transformation algorithm (objective relational transformation, ORT). The ORT algorithm was also adopted for the transformation of architecture data. The database is being developed in MySQL and has been populated with literature reports on tract-tracing observations in the ferret brain using a custom-designed web interface that allows efficient and validated simultaneous input and proofreading by multiple curators. The database is equipped with a non-specialist web interface. This interface can be extended to produce connectivity matrices in several formats, including a graphical representation superimposed on established ferret brain maps. An important feature of the Ferretome database is the possibility to trace back entries in connectivity matrices to the original studies archived in the system. Currently, the Ferretome contains 50 reports on connections comprising 20 injection reports with more than 150 labeled source and target areas, the majority reflecting connectivity of subcortical nuclei and 15 descriptions of regional brain architecture. We hope that the Ferretome database will become a useful resource for neuroinformatics and neural modeling, and will support studies of the ferret brain as well as facilitate advances in comparative studies of mesoscopic brain connectivity.

摘要

哺乳动物大脑结构连接数据库,如CoCoMac(cocomac.g-node.org)或BAMS(https://bams1.org),是分析大脑连接性以及对非人类灵长类动物或啮齿动物等物种的脑动力学进行建模的宝贵资源,也为人类大脑的计算建模做出了贡献。雪貂是另一种广泛用于电生理或发育研究的动物模型;然而,目前该物种尚无系统的大脑连接性汇编。因此,我们已开始开发雪貂大脑的解剖连接和结构特征数据库——雪貂连接组(Ferret(connect)ome),网址为www.Ferretome.org。雪貂连接组数据库采用了CoCoMac方法和传统的基本特征,如CoCoMac数据模型。该数据模型经过简化和扩展,以适应以前未涵盖的新数据模式,如脑区的细胞结构。雪貂连接组使用脑区的语义分割以及逻辑脑图谱转换算法(客观关系转换,ORT)。ORT算法也被用于结构数据的转换。该数据库正在MySQL中开发,并已通过一个定制设计的网络界面填充了有关雪貂大脑束路追踪观察的文献报告,该界面允许多个管理员进行高效且经过验证的同步输入和校对。该数据库配备了一个非专业的网络界面。这个界面可以扩展以生成多种格式的连接矩阵,包括叠加在已建立的雪貂脑图谱上的图形表示。雪貂连接组数据库的一个重要特征是能够将连接矩阵中的条目追溯到系统中存档的原始研究。目前,雪貂连接组包含50篇关于连接的报告,其中包括20篇注射报告,涉及150多个标记的源区和靶区,大多数反映了皮质下核团的连接性,以及15篇关于区域脑结构的描述。我们希望雪貂连接组数据库将成为神经信息学和神经建模的有用资源,并将支持对雪貂大脑的研究,同时促进介观脑连接性比较研究的进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验