Suppr超能文献

用于猕猴大脑连接性数据整理的高级数据库方法(CoCoMac)。

Advanced database methodology for the Collation of Connectivity data on the Macaque brain (CoCoMac).

作者信息

Stephan K E, Kamper L, Bozkurt A, Burns G A, Young M P, Kötter R

机构信息

Computational Systems Neuroscience Group, C. and O. Vogt Brain Research Institute, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2001 Aug 29;356(1412):1159-86. doi: 10.1098/rstb.2001.0908.

Abstract

The need to integrate massively increasing amounts of data on the mammalian brain has driven several ambitious neuroscientific database projects that were started during the last decade. Databasing the brain's anatomical connectivity as delivered by tracing studies is of particular importance as these data characterize fundamental structural constraints of the complex and poorly understood functional interactions between the components of real neural systems. Previous connectivity databases have been crucial for analysing anatomical brain circuitry in various species and have opened exciting new ways to interpret functional data, both from electrophysiological and from functional imaging studies. The eventual impact and success of connectivity databases, however, will require the resolution of several methodological problems that currently limit their use. These problems comprise four main points: (i) objective representation of coordinate-free, parcellation-based data, (ii) assessment of the reliability and precision of individual data, especially in the presence of contradictory reports, (iii) data mining and integration of large sets of partially redundant and contradictory data, and (iv) automatic and reproducible transformation of data between incongruent brain maps. Here, we present the specific implementation of the 'collation of connectivity data on the macaque brain' (CoCoMac) database (http://www.cocomac.org). The design of this database addresses the methodological challenges listed above, and focuses on experimental and computational neuroscientists' needs to flexibly analyse and process the large amount of published experimental data from tracing studies. In this article, we explain step-by-step the conceptual rationale and methodology of CoCoMac and demonstrate its practical use by an analysis of connectivity in the prefrontal cortex.

摘要

整合大量不断增加的哺乳动物大脑数据的需求推动了过去十年间启动的几个雄心勃勃的神经科学数据库项目。将追踪研究提供的大脑解剖连接数据存入数据库尤为重要,因为这些数据表征了真实神经系统各组成部分之间复杂且理解不足的功能相互作用的基本结构限制。先前的连接数据库对于分析各种物种的大脑解剖回路至关重要,并为解释来自电生理和功能成像研究的功能数据开辟了令人兴奋的新途径。然而,连接数据库最终的影响和成功将需要解决目前限制其使用的几个方法学问题。这些问题主要包括四点:(i)无坐标、基于脑区划分的数据的客观表示,(ii)评估单个数据的可靠性和精度,特别是在存在相互矛盾报告的情况下,(iii)大量部分冗余和相互矛盾数据的数据挖掘与整合,以及(iv)在不一致的脑图谱之间自动且可重复的数据转换。在此,我们展示了“猕猴大脑连接数据整理”(CoCoMac)数据库(http://www.cocomac.org)的具体实现。该数据库的设计解决了上述方法学挑战,并专注于实验和计算神经科学家灵活分析和处理来自追踪研究的大量已发表实验数据的需求。在本文中,我们逐步解释CoCoMac的概念原理和方法,并通过对前额叶皮质连接性分析展示其实际用途。

相似文献

7
Databasing receptor distributions in the brain.建立大脑中受体分布的数据库。
Methods Mol Biol. 2007;401:267-84. doi: 10.1007/978-1-59745-520-6_15.
9
The history of CoCoMac.可可萌的历史。
Neuroimage. 2013 Oct 15;80:46-52. doi: 10.1016/j.neuroimage.2013.03.016. Epub 2013 Mar 21.
10
ABCD: a functional database for the avian brain.ABCD:鸟类大脑功能数据库
J Neurosci Methods. 2008 Jan 30;167(2):393-5. doi: 10.1016/j.jneumeth.2007.08.007. Epub 2007 Aug 19.

引用本文的文献

2
6
A simulated annealing algorithm for randomizing weighted networks.一种用于加权网络随机化的模拟退火算法。
Nat Comput Sci. 2025 Jan;5(1):48-64. doi: 10.1038/s43588-024-00735-z. Epub 2024 Dec 10.
8
Quantifying myelin density in the feline auditory cortex.量化猫听觉皮层中的髓鞘密度。
Brain Struct Funct. 2024 Nov;229(8):1927-1941. doi: 10.1007/s00429-024-02821-4. Epub 2024 Jul 9.
9
Effects of packetization on communication dynamics in brain networks.分组化对脑网络中通信动态的影响。
Netw Neurosci. 2024 Jul 1;8(2):418-436. doi: 10.1162/netn_a_00360. eCollection 2024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验