Stephan K E, Zilles K, Kötter R
C. & O. Vogt Brain Research Institute, Heinrich Heine University, Düsseldorf, Germany.
Philos Trans R Soc Lond B Biol Sci. 2000 Jan 29;355(1393):37-54. doi: 10.1098/rstb.2000.0548.
Neuroscience has produced an enormous amount of structural and functional data. Powerful database systems are required to make these data accessible for computational approaches such as higher-order analyses and simulations. Available databases for key data such as anatomical and functional connectivity between cortical areas, however, are still hampered by methodological problems. These problems arise predominantly from the parcellation problem, the use of incongruent parcellation schemes by different authors. We here present a coordinate-independent mathematical method to overcome this problem: objective relational transformation (ORT). Based on new classifications for brain data and on methods from theoretical computer science, ORT represents a formally defined, transparent transformation method for reproducible, coordinate-independent mapping of brain data to freely chosen parcellation schemes. We describe the methodology of ORT and discuss its strengths and limitations. Using two practical examples, we show that ORT in conjunction with connectivity databases like CoCoMac (http://www.cocomac.org) is an important tool for analyses of cortical organization and structure-function relationships.
神经科学已经产生了大量的结构和功能数据。需要强大的数据库系统来使这些数据可用于诸如高阶分析和模拟等计算方法。然而,对于诸如皮质区域之间的解剖和功能连接等关键数据的现有数据库,仍然受到方法学问题的阻碍。这些问题主要源于分割问题,即不同作者使用不一致的分割方案。我们在此提出一种与坐标无关的数学方法来克服这个问题:客观关系转换(ORT)。基于大脑数据的新分类以及理论计算机科学的方法,ORT代表了一种形式上定义明确、透明的转换方法,用于将大脑数据可重复地、与坐标无关地映射到自由选择的分割方案。我们描述了ORT的方法,并讨论了其优点和局限性。通过两个实际例子,我们表明ORT与像CoCoMac(http://www.cocomac.org)这样的连接性数据库相结合,是分析皮质组织和结构 - 功能关系的重要工具。