Sterck Frank, Anten Niels P R, Schieving Feike, Zuidema Pieter A
Forest Ecology and Forest Management Group, Wageningen University Wageningen, Netherlands.
Centre for Crop Systems Analysis, Wageningen UniversityWageningen, Netherlands; Ecology and Biodiversity Group, Department of Biology, Utrecht UniversityUtrecht, Netherlands.
Front Plant Sci. 2016 May 11;7:607. doi: 10.3389/fpls.2016.00607. eCollection 2016.
There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and - the notoriously unknown - physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area) to maximize carbon gain. We simulated tree carbon gain for temperatures (25-35°C) and ambient CO2 concentrations (390-800 ppm) predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10-20% and the maximum tolerated temperature by up to 2°C, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change.
关于全球变化对热带森林的影响存在激烈争论。许多科学家预测会出现大规模树木死亡,而另一些人则指出二氧化碳施肥以及树木生理特征适应(这一 notoriously unknown 因素)所起的缓解作用。在这篇观点文章中,我们首次对特征适应减轻变暖对热带冠层树木生长和存活负面影响的潜力进行了量化。我们应用了一个生理树木生长模型,该模型通过一种优化方法纳入了特征适应。我们的模型估计了树木在一周到一年的时间尺度上优化具有强可塑性的特征(叶片光合能力、总叶面积、茎边材面积)以实现碳增益最大化时适应的最大效果。我们模拟了 21 世纪预测的温度(25 - 35°C)和环境二氧化碳浓度(390 - 800 ppm)下树木的碳增益。完全的特征适应使模拟的碳增益最多增加 10 - 20%,最大耐受温度最多提高 2°C,从而降低了预测变暖情况下树木死亡的风险。因此,功能特征适应可能会增加热带树木对变暖的恢复力,但在当前二氧化碳水平下,无法防止树木在极热和干旱年份死亡。我们呼吁在植物功能特征的野外和实验研究以及预测热带森林对气候变化响应的模型中纳入特征适应。