Schippers Peter, Sterck Frank, Vlam Mart, Zuidema Pieter A
Forest Ecology and Forest Management Group, Wageningen University, PO Box 47, 6700 AA, Wageningen, The Netherlands.
Team Biodiversity and Policy, ALTERRA, Wageningen University and Research Centre, PO Box 47, 6700 AA, Wageningen, The Netherlands.
Glob Chang Biol. 2015 Jul;21(7):2749-2761. doi: 10.1111/gcb.12877. Epub 2015 Mar 31.
Tropical forest responses to climatic variability have important consequences for global carbon cycling, but are poorly understood. As empirical, correlative studies cannot disentangle the interactive effects of climatic variables on tree growth, we used a tree growth model (IBTREE) to unravel the climate effects on different physiological pathways and in turn on stem growth variation. We parameterized the model for canopy trees of Toona ciliata (Meliaceae) from a Thai monsoon forest and compared predicted and measured variation from a tree-ring study over a 30-year period. We used historical climatic variation of minimum and maximum day temperature, precipitation and carbon dioxide (CO ) in different combinations to estimate the contribution of each climate factor in explaining the inter-annual variation in stem growth. Running the model with only variation in maximum temperature and rainfall yielded stem growth patterns that explained almost 70% of the observed inter-annual variation in stem growth. Our results show that maximum temperature had a strong negative effect on the stem growth by increasing respiration, reducing stomatal conductance and thus mitigating a higher transpiration demand, and - to a lesser extent - by directly reducing photosynthesis. Although stem growth was rather weakly sensitive to rain, stem growth variation responded strongly and positively to rainfall variation owing to the strong inter-annual fluctuations in rainfall. Minimum temperature and atmospheric CO concentration did not significantly contribute to explaining the inter-annual variation in stem growth. Our innovative approach - combining a simulation model with historical data on tree-ring growth and climate - allowed disentangling the effects of strongly correlated climate variables on growth through different physiological pathways. Similar studies on different species and in different forest types are needed to further improve our understanding of the sensitivity of tropical tree growth to climatic variability and change.
热带森林对气候变异性的响应对于全球碳循环具有重要影响,但目前人们对此了解甚少。由于实证性的相关性研究无法厘清气候变量对树木生长的交互作用,我们使用了一个树木生长模型(IBTREE)来揭示气候对不同生理途径进而对茎干生长变化的影响。我们对泰国季风森林中红椿(楝科)的冠层树木进行了模型参数化,并比较了30年期间树木年轮研究中预测和实测的变化。我们采用不同组合的日最低和最高温度、降水量以及二氧化碳(CO₂)的历史气候变化,来估算每个气候因子在解释茎干生长年际变化中的贡献。仅运行最高温度和降雨量变化的模型所产生的茎干生长模式,就能解释近70%观测到的茎干生长年际变化。我们的结果表明,最高温度通过增加呼吸作用、降低气孔导度从而缓解更高的蒸腾需求,对茎干生长产生强烈的负面影响,并且在较小程度上直接降低光合作用。尽管茎干生长对降雨的敏感性较弱,但由于降雨的强烈年际波动,茎干生长变化对降雨变化有强烈且正向的响应。最低温度和大气CO₂浓度对解释茎干生长的年际变化没有显著贡献。我们创新的方法——将模拟模型与树木年轮生长和气候的历史数据相结合——使得通过不同生理途径厘清强相关气候变量对生长的影响成为可能。需要对不同物种和不同森林类型开展类似研究,以进一步增进我们对热带树木生长对气候变异性和变化敏感性的理解。