Institut Charles Gerhardt Montpellier, UMR CNRS 5253, Agrégats Interfaces et Matériaux pour l'Energie, Université de Montpellier , 34095 Cedex 5 Montpellier, France.
ACS Appl Mater Interfaces. 2016 Jul 6;8(26):16897-906. doi: 10.1021/acsami.6b02713. Epub 2016 Jun 23.
Microwave heating holds all the aces regarding development of effective and environmentally friendly methods to perform chemical transformations. Coupling the benefits of microwave-enhanced chemistry with highly reliable copper-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry paves the way for a rapid and efficient synthesis procedure to afford high performance thermoplastic materials. We describe herein fast and high yielding synthesis of 1,2,3-triazole-functionalized polysulfone through microwave-assisted CuAAC as well as explore their potential as phosphoric acid doped polymer electrolyte membranes (PEM) for high temperature PEM fuel cells. Polymers with various degrees of substitution of the side-chain functionality of 1,4-substituted 1,2,3-triazole with alkyl and aryl pendant structures are prepared by sequential chloromethylation, azidation, and microwave-assisted CuAAC using a range of alkynes (1-pentyne, 1-nonyne, and phenylacetylene). The completeness of reaction at each step and the purity of the clicked polymers were confirmed by (1)H-(13)C NMR, DOSY-NMR and FTIR-ATR spectroscopies. The thermal and thermochemical properties of the modified polymers were characterized by differential scanning calorimetry and thermogravimetric analysis coupled with mass spectroscopy (TG-MS), respectively. TG-MS analysis demonstrated that the commencement of the thermal degradation takes place with the decomposition of the triazole ring while its substituents have critical influence on the initiation temperature. Polysulfone functionalized with 4-phenyl-1,2,3-triazole demonstrates significantly higher Tg, Td, and elastic modulus than the ones bearing 4-propyl-1,2,3-triazole and 4-heptyl-1,2,3-triazole groups. After doping with phosphoric acid, the functionalized polymers with acid doping level of 5 show promising performance with high proton conductivity in anhydrous conditions (in the range of 27-35 mS/cm) and satisfactorily high elastic modulus (in the range of 332-349 MPa).
微波加热在开发有效且环保的化学转化方法方面具有独特优势。将微波增强化学的优势与高可靠性的铜催化叠氮-炔环加成(CuAAC)点击化学相结合,为快速高效的合成方法铺平了道路,从而得到高性能热塑性材料。本文描述了通过微波辅助的 CuAAC 快速高产合成 1,2,3-三唑功能化聚砜,以及探索其作为磷酸掺杂聚合物电解质膜(PEM)在高温 PEM 燃料电池中的应用。通过顺序氯甲基化、叠氮化和微波辅助的 CuAAC 反应,使用一系列炔烃(1-戊炔、1-壬炔和苯乙炔),制备了具有各种侧链取代度的 1,4-取代 1,2,3-三唑的烷基和芳基支链结构的聚合物。通过(1)H-(13)C NMR、DOSY-NMR 和 FTIR-ATR 光谱证实了各步反应的完全性和点击聚合物的纯度。通过差示扫描量热法和热重分析与质谱联用(TG-MS)分别对改性聚合物的热和热化学性质进行了表征。TG-MS 分析表明,热降解始于三唑环的分解,而其取代基对起始温度有重要影响。与含有 4-丙基-1,2,3-三唑和 4-庚基-1,2,3-三唑基团的聚合物相比,4-苯基-1,2,3-三唑功能化的聚砜具有更高的玻璃化转变温度(Tg)、Td 和弹性模量。在掺杂磷酸后,具有 5wt%酸掺杂水平的功能化聚合物在无水条件下具有有希望的性能,质子电导率在 27-35 mS/cm 范围内,弹性模量在 332-349 MPa 范围内也较高。