比较应答驱动抽样估计量以确定俄罗斯莫斯科男男性行为者中的艾滋病毒流行率和人群特征

Comparison of Respondent Driven Sampling Estimators to Determine HIV Prevalence and Population Characteristics among Men Who Have Sex with Men in Moscow, Russia.

作者信息

Wirtz Andrea L, Mehta Shruti H, Latkin Carl, Zelaya Carla E, Galai Noya, Peryshkina Alena, Mogilnyi Vladimir, Dzhigun Petr, Kostetskaya Irina, Beyrer Chris

机构信息

Center for Public Health and Human Rights, Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States of America.

Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States of America.

出版信息

PLoS One. 2016 Jun 1;11(6):e0155519. doi: 10.1371/journal.pone.0155519. eCollection 2016.

Abstract

Analytically distinct estimators have been proposed for the calculation of population-based estimates derived from respondent-driven sampling (RDS), yet there have been few comparisons of the inferences from these estimators using empirical data. We compared estimates produced by unweighted analysis used to calculate sample proportions and by three available estimators that are used to calculate population proportions, RDS-I, RDS-II (Volz-Heckathorn), and Gile's RDS-SS. Data were derived from a cross-sectional, RDS study of men who have sex with men (MSM) conducted from October 2010 to April 2013 in Moscow, Russia (N = 1,376, recruitment depth: 31 waves). Analyses investigated the influence of key parameters: recruitment depth, homophily, and network size on sample and population estimates. Variability in results produced by the estimators and recruitment depth were statistically compared using the coefficient of variation (CV). Sample proportions had the least variability across different recruitment depths, compared to the RDS estimators. Population estimates tended to differ at lower recruitment depth but were approximately equal after reaching sampling equilibrium, highlighting the importance of sampling to greater recruitment depth. All estimators incorporate inverse probability weighting using self-reported network size, explaining the similarities in across population estimates and the difference of these estimates relative to sample proportions. Current biases and limitations associated with RDS estimators are discussed.

摘要

针对基于应答者驱动抽样(RDS)得出的人群估计值的计算,已经提出了在分析上不同的估计方法,然而,利用经验数据对这些估计方法所得推论进行比较的情况却很少。我们比较了用于计算样本比例的未加权分析以及用于计算人群比例的三种可用估计方法(RDS-I、RDS-II(沃尔兹-赫克索恩法)和吉尔的RDS-SS法)所得出的估计值。数据来源于2010年10月至2013年4月在俄罗斯莫斯科对男男性行为者(MSM)开展的一项横断面RDS研究(N = 1376,招募深度:31轮)。分析研究了关键参数(招募深度、同质性和网络规模)对样本和人群估计值的影响。使用变异系数(CV)对估计方法和招募深度所产生结果的变异性进行了统计学比较。与RDS估计方法相比,样本比例在不同招募深度下的变异性最小。人群估计值在较低招募深度时往往存在差异,但在达到抽样平衡后大致相等,这突出了抽样至更大招募深度的重要性。所有估计方法都使用自我报告的网络规模纳入了逆概率加权,这解释了人群估计值之间的相似性以及这些估计值相对于样本比例的差异。本文讨论了与RDS估计方法相关的当前偏差和局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3033/4889072/9b7ac2c0703e/pone.0155519.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索