Dieffenderfer James, Goodell Henry, Mills Steven, McKnight Michael, Yao Shanshan, Lin Feiyan, Beppler Eric, Bent Brinnae, Lee Bongmook, Misra Veena, Zhu Yong, Oralkan Omer, Strohmaier Jason, Muth John, Peden David, Bozkurt Alper
IEEE J Biomed Health Inform. 2016 Sep;20(5):1251-1264. doi: 10.1109/JBHI.2016.2573286. Epub 2016 May 26.
We present our efforts toward enabling a wearable sensor system that allows for the correlation of individual environmental exposures with physiologic and subsequent adverse health responses. This system will permit a better understanding of the impact of increased ozone levels and other pollutants on chronic asthma conditions. We discuss the inefficiency of existing commercial off-the-shelf components to achieve continuous monitoring and our system-level and nano-enabled efforts toward improving the wearability and power consumption. Our system consists of a wristband, a chest patch, and a handheld spirometer. We describe our preliminary efforts to achieve a submilliwatt system ultimately powered by the energy harvested from thermal radiation and motion of the body with the primary contributions being an ultralow-power ozone sensor, an volatile organic compounds sensor, spirometer, and the integration of these and other sensors in a multimodal sensing platform. The measured environmental parameters include ambient ozone concentration, temperature, and relative humidity. Our array of sensors also assesses heart rate via photoplethysmography and electrocardiography, respiratory rate via photoplethysmography, skin impedance, three-axis acceleration, wheezing via a microphone, and expiratory airflow. The sensors on the wristband, chest patch, and spirometer consume 0.83, 0.96, and 0.01 mW, respectively. The data from each sensor are continually streamed to a peripheral data aggregation device and are subsequently transferred to a dedicated server for cloud storage. Future work includes reducing the power consumption of the system-on-chip including radio to reduce the entirety of each described system in the submilliwatt range.
我们展示了为实现一种可穿戴传感器系统所做的努力,该系统能够将个体的环境暴露与生理反应以及随后的不良健康反应关联起来。这个系统将有助于更好地理解臭氧水平升高和其他污染物对慢性哮喘病情的影响。我们讨论了现有商用现成组件在实现连续监测方面的低效性,以及我们在系统层面和纳米技术方面为提高可穿戴性和降低功耗所做的努力。我们的系统由一个腕带、一个胸部贴片和一个手持式肺活量计组成。我们描述了我们初步的努力,即实现一个最终由从热辐射和身体运动中收集的能量供电的亚毫瓦级系统,主要成果包括一个超低功耗的臭氧传感器、一个挥发性有机化合物传感器、肺活量计,以及将这些和其他传感器集成到一个多模态传感平台中。所测量的环境参数包括环境臭氧浓度、温度和相对湿度。我们的传感器阵列还通过光电容积脉搏波描记法和心电图来评估心率,通过光电容积脉搏波描记法评估呼吸频率,测量皮肤阻抗、三轴加速度,通过麦克风检测喘息,以及检测呼气气流。腕带、胸部贴片和肺活量计上的传感器功耗分别为0.83毫瓦、0.96毫瓦和0.01毫瓦。来自每个传感器的数据持续传输到一个外围数据聚合设备,随后被传输到一个专用服务器进行云存储。未来的工作包括降低包括无线电在内的片上系统的功耗,以将每个所述系统的整体功耗降低到亚毫瓦范围内。