Suppr超能文献

自组织脉冲神经网络中的变换不变视觉表示。

Transformation-invariant visual representations in self-organizing spiking neural networks.

机构信息

Department of Experimental Psychology, Centre for Theoretical Neuroscience and Artificial Intelligence, University of Oxford Oxford, UK.

出版信息

Front Comput Neurosci. 2012 Jul 25;6:46. doi: 10.3389/fncom.2012.00046. eCollection 2012.

Abstract

The ventral visual pathway achieves object and face recognition by building transformation-invariant representations from elementary visual features. In previous computer simulation studies with rate-coded neural networks, the development of transformation-invariant representations has been demonstrated using either of two biologically plausible learning mechanisms, Trace learning and Continuous Transformation (CT) learning. However, it has not previously been investigated how transformation-invariant representations may be learned in a more biologically accurate spiking neural network. A key issue is how the synaptic connection strengths in such a spiking network might self-organize through Spike-Time Dependent Plasticity (STDP) where the change in synaptic strength is dependent on the relative times of the spikes emitted by the presynaptic and postsynaptic neurons rather than simply correlated activity driving changes in synaptic efficacy. Here we present simulations with conductance-based integrate-and-fire (IF) neurons using a STDP learning rule to address these gaps in our understanding. It is demonstrated that with the appropriate selection of model parameters and training regime, the spiking network model can utilize either Trace-like or CT-like learning mechanisms to achieve transform-invariant representations.

摘要

腹侧视觉通路通过从基本视觉特征构建变换不变表示来实现物体和面部识别。在之前使用率编码神经网络的计算机模拟研究中,已经使用两种生物学上合理的学习机制(Trace 学习和连续变换(CT)学习)来证明变换不变表示的发展。然而,以前尚未研究在更符合生物学的尖峰神经网络中如何学习变换不变表示。一个关键问题是,在这种尖峰网络中,突触连接强度如何通过 Spike-Time Dependent Plasticity(STDP)进行自组织,其中突触强度的变化取决于前突触和后突触神经元发出的尖峰的相对时间,而不仅仅是驱动突触效能变化的相关活动。在这里,我们使用基于电导的积分-点火(IF)神经元进行了仿真,使用 STDP 学习规则来解决我们理解中的这些差距。结果表明,通过适当选择模型参数和训练方案,尖峰网络模型可以利用类似于 Trace 的或 CT 样的学习机制来实现变换不变表示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef0d/3404434/493c86144f25/fncom-06-00046-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验