Watt James, Webster Thomas F, Schlezinger Jennifer J
Boston University School of Public Health, Boston, Massachusetts 02118.
Boston University School of Public Health, Boston, Massachusetts 02118
Toxicol Sci. 2016 Sep;153(1):18-27. doi: 10.1093/toxsci/kfw100. Epub 2016 Jun 2.
The vast array of potential environmental toxicant combinations necessitates the development of efficient strategies for predicting toxic effects of mixtures. Current practices emphasize the use of concentration addition to predict joint effects of endocrine disrupting chemicals in coexposures. Generalized concentration addition (GCA) is one such method for predicting joint effects of coexposures to chemicals and has the advantage of allowing for mixture components to have differences in efficacy (ie, dose-response curve maxima). Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor that plays a central role in regulating lipid homeostasis, insulin sensitivity, and bone quality and is the target of an increasing number of environmental toxicants. Here, we tested the applicability of GCA in predicting mixture effects of therapeutic (rosiglitazone and nonthiazolidinedione partial agonist) and environmental PPARγ ligands (phthalate compounds identified using EPA's ToxCast database). Transcriptional activation of human PPARγ1 by individual compounds and mixtures was assessed using a peroxisome proliferator response element-driven luciferase reporter. Using individual dose-response parameters and GCA, we generated predictions of PPARγ activation by the mixtures, and we compared these predictions with the empirical data. At high concentrations, GCA provided a better estimation of the experimental response compared with 3 alternative models: toxic equivalency factor, effect summation and independent action. These alternatives provided reasonable fits to the data at low concentrations in this system. These experiments support the implementation of GCA in mixtures analysis with endocrine disrupting compounds and establish PPARγ as an important target for further studies of chemical mixtures.
大量潜在的环境毒物组合使得开发预测混合物毒性效应的有效策略成为必要。当前的做法强调使用浓度相加法来预测共同暴露中内分泌干扰化学物质的联合效应。广义浓度相加法(GCA)就是这样一种预测化学物质共同暴露联合效应的方法,其优点是允许混合物成分在效力上存在差异(即剂量反应曲线最大值)。过氧化物酶体增殖物激活受体γ(PPARγ)是一种核受体,在调节脂质稳态、胰岛素敏感性和骨质方面发挥核心作用,并且是越来越多环境毒物的作用靶点。在此,我们测试了GCA在预测治疗性(罗格列酮和非噻唑烷二酮类部分激动剂)和环境PPARγ配体(使用美国环境保护局的ToxCast数据库鉴定的邻苯二甲酸酯化合物)混合物效应方面的适用性。使用过氧化物酶体增殖物反应元件驱动的荧光素酶报告基因评估单个化合物和混合物对人PPARγ1的转录激活。利用单个剂量反应参数和GCA,我们生成了混合物对PPARγ激活的预测,并将这些预测与实验数据进行了比较。在高浓度下,与三种替代模型(毒性等效因子、效应相加和独立作用)相比,GCA对实验反应的估计更好。在该系统中,这些替代模型在低浓度下能合理拟合数据。这些实验支持在混合物分析中使用GCA来分析内分泌干扰化合物,并确立PPARγ作为化学混合物进一步研究的重要靶点。