文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

成年微生物群缺乏的小鼠有明显的树突形态变化:在杏仁核和海马体中的不同影响。

Adult microbiota-deficient mice have distinct dendritic morphological changes: differential effects in the amygdala and hippocampus.

作者信息

Luczynski Pauline, Whelan Seán O, O'Sullivan Colette, Clarke Gerard, Shanahan Fergus, Dinan Timothy G, Cryan John F

机构信息

APC Microbiome Institute, University College Cork, Room 3.86, Western Gateway Building, Cork, Ireland.

Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.

出版信息

Eur J Neurosci. 2016 Nov;44(9):2654-2666. doi: 10.1111/ejn.13291. Epub 2016 Jul 8.


DOI:10.1111/ejn.13291
PMID:27256072
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5113767/
Abstract

Increasing evidence implicates the microbiota in the regulation of brain and behaviour. Germ-free mice (GF; microbiota deficient from birth) exhibit altered stress hormone signalling and anxiety-like behaviours as well as deficits in social cognition. Although the mechanisms underlying the ability of the gut microbiota to influence stress responsivity and behaviour remain unknown, many lines of evidence point to the amygdala and hippocampus as likely targets. Thus, the aim of this study was to determine if the volume and dendritic morphology of the amygdala and hippocampus differ in GF versus conventionally colonized (CC) mice. Volumetric estimates revealed significant amygdalar and hippocampal expansion in GF compared to CC mice. We also studied the effect of GF status on the level of single neurons in the basolateral amygdala (BLA) and ventral hippocampus. In the BLA, the aspiny interneurons and pyramidal neurons of GF mice exhibited dendritic hypertrophy. The BLA pyramidal neurons of GF mice had more thin, stubby and mushroom spines. In contrast, the ventral hippocampal pyramidal neurons of GF mice were shorter, less branched and had less stubby and mushroom spines. When compared to controls, dentate granule cells of GF mice were less branched but did not differ in spine density. These findings suggest that the microbiota is required for the normal gross morphology and ultrastructure of the amygdala and hippocampus and that this neural remodelling may contribute to the maladaptive stress responsivity and behavioural profile observed in GF mice.

摘要

越来越多的证据表明微生物群参与大脑和行为的调节。无菌小鼠(GF;从出生起就缺乏微生物群)表现出应激激素信号改变和焦虑样行为,以及社会认知缺陷。尽管肠道微生物群影响应激反应性和行为的潜在机制尚不清楚,但许多证据表明杏仁核和海马体可能是其作用靶点。因此,本研究的目的是确定在GF小鼠与常规定殖(CC)小鼠中,杏仁核和海马体的体积和树突形态是否存在差异。体积估计显示,与CC小鼠相比,GF小鼠的杏仁核和海马体明显增大。我们还研究了GF状态对基底外侧杏仁核(BLA)和腹侧海马体单个神经元水平的影响。在BLA中,GF小鼠的无棘中间神经元和锥体神经元表现出树突肥大。GF小鼠的BLA锥体神经元有更多细的、短粗的和蘑菇状棘突。相比之下,GF小鼠的腹侧海马体锥体神经元较短,分支较少,短粗的和蘑菇状棘突也较少。与对照组相比,GF小鼠的齿状颗粒细胞分支较少,但棘突密度没有差异。这些发现表明,微生物群是杏仁核和海马体正常大体形态和超微结构所必需的,这种神经重塑可能导致在GF小鼠中观察到的适应不良的应激反应性和行为特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e64/5113767/4c2c2eab7804/EJN-44-2654-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e64/5113767/cd452201f4db/EJN-44-2654-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e64/5113767/7b84ea58250f/EJN-44-2654-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e64/5113767/34abf6feaffe/EJN-44-2654-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e64/5113767/0a75c80827ad/EJN-44-2654-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e64/5113767/4c2c2eab7804/EJN-44-2654-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e64/5113767/cd452201f4db/EJN-44-2654-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e64/5113767/7b84ea58250f/EJN-44-2654-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e64/5113767/34abf6feaffe/EJN-44-2654-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e64/5113767/0a75c80827ad/EJN-44-2654-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e64/5113767/4c2c2eab7804/EJN-44-2654-g005.jpg

相似文献

[1]
Adult microbiota-deficient mice have distinct dendritic morphological changes: differential effects in the amygdala and hippocampus.

Eur J Neurosci. 2016-11

[2]
Dendritic morphology of hippocampal and amygdalar neurons in adolescent mice is resilient to genetic differences in stress reactivity.

PLoS One. 2012-6-12

[3]
Dendritic morphology of amygdala and hippocampal neurons in more and less predator stress responsive rats and more and less spontaneously anxious handled controls.

Behav Brain Res. 2011-9-12

[4]
Transcriptional markers of excitation-inhibition balance in germ-free mice show region-specific dysregulation and rescue after bacterial colonization.

J Psychiatr Res. 2021-3

[5]
PTEN knockdown alters dendritic spine/protrusion morphology, not density.

J Comp Neurol. 2014-4-1

[6]
Conditional deletion of ROCK2 induces anxiety-like behaviors and alters dendritic spine density and morphology on CA1 pyramidal neurons.

Mol Brain. 2021-11-18

[7]
Microbes & neurodevelopment--Absence of microbiota during early life increases activity-related transcriptional pathways in the amygdala.

Brain Behav Immun. 2015-7-14

[8]
Acute gut inflammation reduces neural activity and spine maturity in hippocampus but not basolateral amygdala.

Sci Rep. 2022-11-23

[9]
Cranial irradiation alters dendritic spine density and morphology in the hippocampus.

PLoS One. 2012-7-16

[10]
Adolescent social isolation enhances the plasmalemmal density of NMDA NR1 subunits in dendritic spines of principal neurons in the basolateral amygdala of adult mice.

Neuroscience. 2014-1-31

引用本文的文献

[1]
Bidirectional crosstalk between the gut microbiota and cellular compartments of brain: Implications for neurodevelopmental and neuropsychiatric disorders.

Transl Psychiatry. 2025-8-13

[2]
Butyrate preserves entorhinal-hippocampal spatial coding and blood brain barrier integrity in mice with depleted gut microbiome.

bioRxiv. 2025-7-31

[3]
Consensus statement on exploring the Nexus between nutrition, brain health and dementia prevention.

Nutr Metab (Lond). 2025-7-25

[4]
Role of gut microbiota in neuroinflammation: a focus on perioperative neurocognitive disorders.

Front Cell Infect Microbiol. 2025-7-7

[5]
Maternal Stress and Maternal Microbiome Manipulations Remodel Offspring Medial Prefrontal Cortex in a Sex-Dependent Manner.

Dev Neurobiol. 2025-7

[6]
The relationship between gut microbiome and human diseases: mechanisms, predisposing factors and potential intervention.

Front Cell Infect Microbiol. 2025-5-6

[7]
reverses neuronal atrophy in knockout mice with depression-like phenotypes.

Gut Microbes. 2025-12

[8]
Unraveling the Interplay Between Metabolism and Neurodevelopment in Health and Disease.

CNS Neurosci Ther. 2025-5

[9]
Exploring the microbiota-gut-brain axis: impact on brain structure and function.

Front Neuroanat. 2025-2-12

[10]
Gut-brain axis and neuroplasticity in health and disease: a systematic review.

Radiol Med. 2025-3

本文引用的文献

[1]
Reframing the Teenage Wasteland: Adolescent Microbiota-Gut-Brain Axis.

Can J Psychiatry. 2016-4

[2]
Regulation of prefrontal cortex myelination by the microbiota.

Transl Psychiatry. 2016-4-5

[3]
The maternal microbiota drives early postnatal innate immune development.

Science. 2016-3-18

[4]
Growing up in a Bubble: Using Germ-Free Animals to Assess the Influence of the Gut Microbiota on Brain and Behavior.

Int J Neuropsychopharmacol. 2016-8-12

[5]
Host microbiota modulates development of social preference in mice.

Microb Ecol Health Dis. 2015-12-15

[6]
Microbes & neurodevelopment--Absence of microbiota during early life increases activity-related transcriptional pathways in the amygdala.

Brain Behav Immun. 2015-7-14

[7]
Prenatal stress-induced alterations in major physiological systems correlate with gut microbiota composition in adulthood.

Psychoneuroendocrinology. 2015-10

[8]
Structural and functional characterization of dendritic arbors and GABAergic synaptic inputs on interneurons and principal cells in the rat basolateral amygdala.

J Neurophysiol. 2015-8

[9]
Neuronal circuits for fear and anxiety.

Nat Rev Neurosci. 2015-6

[10]
Elevated microRNA-181c and microRNA-30d levels in the enlarged amygdala of the valproic acid rat model of autism.

Neurobiol Dis. 2015-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索