Suppr超能文献

基于稀疏分布矢量传感器阵列的不相关与相干源混合信号的二维波达方向和极化估计

Two-Dimensional DOA and Polarization Estimation for a Mixture of Uncorrelated and Coherent Sources with Sparsely-Distributed Vector Sensor Array.

作者信息

Si Weijian, Zhao Pinjiao, Qu Zhiyu

机构信息

College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China.

出版信息

Sensors (Basel). 2016 May 31;16(6):789. doi: 10.3390/s16060789.

Abstract

This paper presents an L-shaped sparsely-distributed vector sensor (SD-VS) array with four different antenna compositions. With the proposed SD-VS array, a novel two-dimensional (2-D) direction of arrival (DOA) and polarization estimation method is proposed to handle the scenario where uncorrelated and coherent sources coexist. The uncorrelated and coherent sources are separated based on the moduli of the eigenvalues. For the uncorrelated sources, coarse estimates are acquired by extracting the DOA information embedded in the steering vectors from estimated array response matrix of the uncorrelated sources, and they serve as coarse references to disambiguate fine estimates with cyclical ambiguity obtained from the spatial phase factors. For the coherent sources, four Hankel matrices are constructed, with which the coherent sources are resolved in a similar way as for the uncorrelated sources. The proposed SD-VS array requires only two collocated antennas for each vector sensor, thus the mutual coupling effects across the collocated antennas are reduced greatly. Moreover, the inter-sensor spacings are allowed beyond a half-wavelength, which results in an extended array aperture. Simulation results demonstrate the effectiveness and favorable performance of the proposed method.

摘要

本文提出了一种具有四种不同天线组合的L形稀疏分布矢量传感器(SD-VS)阵列。利用所提出的SD-VS阵列,提出了一种新颖的二维(2-D)到达方向(DOA)和极化估计方法,以处理不相关源和相干源共存的场景。基于特征值的模对不相关源和相干源进行分离。对于不相关源,通过从估计的不相关源阵列响应矩阵中提取嵌入在导向矢量中的DOA信息来获得粗略估计,这些粗略估计用作粗参考,以消除从空间相位因子获得的具有循环模糊性的精细估计。对于相干源,构造四个汉克尔矩阵,以与不相关源类似的方式分辨相干源。所提出的SD-VS阵列每个矢量传感器仅需要两个并置天线,因此大大降低了并置天线之间的互耦效应。此外,传感器间间距允许超过半波长,这导致阵列孔径扩展。仿真结果证明了所提方法的有效性和良好性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/075e/4934215/095088c59bbb/sensors-16-00789-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验