Suppr超能文献

Rearrangement of microtubule associated protein parallels the morphological transformation of neurons from dorsal root ganglion.

作者信息

Hernández M A, Avila J, Moya F, Alberto C

机构信息

Center of Molecular Biology, Autonomous University, Madrid, Spain.

出版信息

Neuroscience. 1989;29(2):471-7. doi: 10.1016/0306-4522(89)90074-2.

Abstract

In primary cultures of dorsal root ganglion cells from rat embryos, neurons undergo a morphological transformation from a bipolar to a differentiated pseudo-unipolar shape, resembling their developmental stages in vivo. Cells present in these cultures are characterized here by immunological criteria using monoclonal and polyclonal antibodies against microtubule associated proteins MAP1 and MAP2 and against tubulin. After development for seven days in culture, antibodies against microtubule associated proteins MAP1 brightly labeled cells with neuronal morphology and lightly stained cells with the shape of Schwann cells. In addition, an extended network of neuronal processes was labeled with this antibody. Anti-microtubule associated protein MAP2 stained only neurons and a more restricted network of neuronal processes. The compartmentalization of microtubule associated protein MAP2 during the maturation process was followed by double-labeling with antibodies to microtubule associated proteins MAP1 and MAP2. Initially, microtubule associated protein MAP2 was present in the cell body and the two processes of bipolar neurons. Subsequently, the labeling of both processes changed, depending on neuronal morphology. In neurons in which both processes were approaching one another, one of these neurites was stained predominantly with anti-microtubule associated protein MAP2. Finally, in pseudo, unipolar neurons, anti-microtubule associated protein MAP2 labeling was found in the cell body and excluded from the more distal processes.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验