文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在自适应头颈部放射治疗中,评估用于CT与锥形束CT图像间轮廓传播的可变形图像配准。

Evaluation of deformable image registration for contour propagation between CT and cone-beam CT images in adaptive head and neck radiotherapy.

作者信息

Li X, Zhang Y Y, Shi Y H, Zhou L H, Zhen X

机构信息

Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China.

Department of Radiotherapy Oncology, the First Hospital of Jilin University, Changchun, Jilin, China.

出版信息

Technol Health Care. 2016 Apr 29;24 Suppl 2:S747-55. doi: 10.3233/THC-161204.


DOI:10.3233/THC-161204
PMID:27259084
Abstract

Deformable image registration (DIR) is a critical technic in adaptive radiotherapy (ART) to propagate contours between planning computerized tomography (CT) images and treatment CT/Cone-beam CT (CBCT) image to account for organ deformation for treatment re-planning. To validate the ability and accuracy of DIR algorithms in organ at risk (OAR) contours mapping, seven intensity-based DIR strategies are tested on the planning CT and weekly CBCT images from six Head & Neck cancer patients who underwent a 6 ∼ 7 weeks intensity-modulated radiation therapy (IMRT). Three similarity metrics, i.e. the Dice similarity coefficient (DSC), the percentage error (PE) and the Hausdorff distance (HD), are employed to measure the agreement between the propagated contours and the physician delineated ground truths. It is found that the performance of all the evaluated DIR algorithms declines as the treatment proceeds. No statistically significant performance difference is observed between different DIR algorithms (p> 0.05), except for the double force demons (DFD) which yields the worst result in terms of DSC and PE. For the metric HD, all the DIR algorithms behaved unsatisfactorily with no statistically significant performance difference (p= 0.273). These findings suggested that special care should be taken when utilizing the intensity-based DIR algorithms involved in this study to deform OAR contours between CT and CBCT, especially for those organs with low contrast.

摘要

可变形图像配准(DIR)是自适应放射治疗(ART)中的一项关键技术,用于在计划计算机断层扫描(CT)图像和治疗CT/锥形束CT(CBCT)图像之间传播轮廓,以考虑器官变形进行治疗重新计划。为了验证DIR算法在危及器官(OAR)轮廓映射中的能力和准确性,对6例接受了6至7周调强放射治疗(IMRT)的头颈癌患者的计划CT图像和每周CBCT图像测试了7种基于强度的DIR策略。采用三种相似性度量,即骰子相似系数(DSC)、百分比误差(PE)和豪斯多夫距离(HD),来测量传播轮廓与医生勾勒的地面真值之间的一致性。结果发现,随着治疗的进行,所有评估的DIR算法的性能都会下降。除了双力恶魔算法(DFD)在DSC和PE方面产生最差结果外,不同的DIR算法之间未观察到统计学上显著的性能差异(p>0.05)。对于HD度量,所有DIR算法的表现都不尽人意,且无统计学上显著的性能差异(p = 0.273)。这些发现表明,在利用本研究中涉及的基于强度的DIR算法在CT和CBCT之间使OAR轮廓变形时,应特别小心,尤其是对于那些对比度低的器官。

相似文献

[1]
Evaluation of deformable image registration for contour propagation between CT and cone-beam CT images in adaptive head and neck radiotherapy.

Technol Health Care. 2016-4-29

[2]
Comprehensive evaluation of ten deformable image registration algorithms for contour propagation between CT and cone-beam CT images in adaptive head & neck radiotherapy.

PLoS One. 2017-4-17

[3]
Evaluation of a commercial DIR platform for contour propagation in prostate cancer patients treated with IMRT/VMAT.

J Appl Clin Med Phys. 2020-2

[4]
Accuracy of software-assisted contour propagation from planning CT to cone beam CT in head and neck radiotherapy.

Acta Oncol. 2016-11

[5]
Deformable image registration based automatic CT-to-CT contour propagation for head and neck adaptive radiotherapy in the routine clinical setting.

Med Phys. 2014-12

[6]
Quantifying the accuracy of deformable image registration for cone-beam computed tomography with a physical phantom.

J Appl Clin Med Phys. 2019-9-21

[7]
A Comparative Evaluation of 3 Different Free-Form Deformable Image Registration and Contour Propagation Methods for Head and Neck MRI: The Case of Parotid Changes During Radiotherapy.

Technol Cancer Res Treat. 2017-6

[8]
Daily kV cone-beam CT and deformable image registration as a method for studying dosimetric consequences of anatomic changes in adaptive IMRT of head and neck cancer.

Acta Oncol. 2010-10

[9]
Toward adaptive radiotherapy for head and neck patients: Feasibility study on using CT-to-CBCT deformable registration for "dose of the day" calculations.

Med Phys. 2014-3

[10]
Investigating CT to CBCT image registration for head and neck proton therapy as a tool for daily dose recalculation.

Med Phys. 2015-3

引用本文的文献

[1]
The accuracy of artificial intelligence deformed nodal structures in cervical online cone-beam-based adaptive radiotherapy.

Phys Imaging Radiat Oncol. 2024-2-8

[2]
The geometric and dosimetric accuracy of kilovoltage cone beam computed tomography images for adaptive treatment: a systematic review.

BJR Open. 2023-5-16

[3]
Comparison of an in-house hybrid DIR method to NiftyReg on CBCT and CT images for head and neck cancer.

J Appl Clin Med Phys. 2022-3

[4]
Clinical Enhancement in AI-Based Post-processed Fast-Scan Low-Dose CBCT for Head and Neck Adaptive Radiotherapy.

Front Artif Intell. 2021-2-11

[5]
Automatic evaluation of contours in radiotherapy planning utilising conformity indices and machine learning.

Phys Imaging Radiat Oncol. 2020-12-1

[6]
Variations of the Dose Distribution Between CT- and CBCT-based Plans for Oropharyngeal Cancer.

In Vivo. 2019

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索