Lukyanchikova N V, Petruseva I O, Evdokimov A N, Silnikov V N, Lavrik O I
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
Biochemistry (Mosc). 2016 Mar;81(3):263-74. doi: 10.1134/S0006297916030093.
Nucleotide excision repair (NER) is a multistep process of recognition and elimination of a wide spectrum of damages that cause significant distortions in DNA structure, such as UV-induced damage and bulky chemical adducts. A series of model DNAs containing new bulky fluoro-azidobenzoyl photoactive lesion dC(FAB) and well-recognized nonnucleoside lesions nFlu and nAnt have been designed and their interaction with repair proteins investigated. We demonstrate that modified DNA duplexes dC(FAB)/dG (probe I), dC(FAB)/nFlu+4 (probe II), and dC(FAB)/nFlu-3 (probe III) have increased (as compared to unmodified DNA, umDNA) structure-dependent affinity for XPC-HR23B (Kdum > KdI > KdII ≈ KdIII) and differentially crosslink to XPC and proteins of NER-competent extracts. The presence of dC(FAB) results in (i) decreased melting temperature (ΔTm = -3°C) and (ii) 12° DNA bending. The extended dC(FAB)/dG-DNA (137 bp) was demonstrated to be an effective NER substrate. Lack of correlation between the affinity to XPC-HR23B and substrate properties of the model DNA suggests a high impact of the verification stage on the overall NER process. In addition, DNAs containing closely positioned, well-recognized lesions in the complementary strands represent hardly repairable (dC(FAB)/nFlu+4, dC(FAB)/nFlu-3) or irreparable (nFlu/nFlu+4, nFlu/nFlu-3, nAnt/nFlu+4, nAnt/nFlu-3) structures. Our data provide evidence that the NER system of higher eukaryotes recognizes and eliminates damaged DNA fragments on a multi-criterion basis.
核苷酸切除修复(NER)是一个多步骤过程,用于识别和消除多种导致DNA结构严重扭曲的损伤,如紫外线诱导的损伤和大分子化学加合物。设计了一系列含有新型大分子氟叠氮苯甲酰光活性损伤dC(FAB)以及公认的非核苷损伤nFlu和nAnt的模型DNA,并研究了它们与修复蛋白的相互作用。我们证明,与未修饰的DNA(umDNA)相比,修饰的DNA双链体dC(FAB)/dG(探针I)、dC(FAB)/nFlu +4(探针II)和dC(FAB)/nFlu -3(探针III)对XPC-HR23B具有增加的结构依赖性亲和力(Kdum > KdI > KdII ≈ KdIII),并与XPC和具有NER活性的提取物中的蛋白质发生差异交联。dC(FAB)的存在导致(i)解链温度降低(ΔTm = -3°C)和(ii)DNA弯曲12°。扩展的dC(FAB)/dG-DNA(137 bp)被证明是一种有效的NER底物。模型DNA对XPC-HR23B的亲和力与底物特性之间缺乏相关性,这表明验证阶段对整个NER过程有很大影响。此外,在互补链中含有紧密定位的、公认损伤的DNA代表几乎不可修复(dC(FAB)/nFlu +4,dC(FAB)/nFlu -3)或不可修复(nFlu/nFlu +4,nFlu/nFlu -3,nAnt/nFlu +4,nAnt/nFlu -3)的结构。我们的数据提供了证据,表明高等真核生物的NER系统在多标准基础上识别和消除受损的DNA片段。