Brisbois Jérémy, Motta Maycon, Avila Jonathan I, Shaw Gorky, Devillers Thibaut, Dempsey Nora M, Veerapandian Savita K P, Colson Pierre, Vanderheyden Benoît, Vanderbemden Philippe, Ortiz Wilson A, Nguyen Ngoc Duy, Kramer Roman B G, Silhanek Alejandro V
Université de Liège, Département de Physique, Sart Tilman, B-4000, Belgium.
Universidade Federal de São Carlos, Departamento de Física, São Carlos, 13565-905 SP, Brazil.
Sci Rep. 2016 Jun 6;6:27159. doi: 10.1038/srep27159.
Local polarization of a magnetic layer, a well-known method for storing information, has found its place in numerous applications such as the popular magnetic drawing board toy or the widespread credit cards and computer hard drives. Here we experimentally show that a similar principle can be applied for imprinting the trajectory of quantum units of flux (vortices), travelling in a superconducting film (Nb), into a soft magnetic layer of permalloy (Py). In full analogy with the magnetic drawing board, vortices act as tiny magnetic scribers leaving a wake of polarized magnetic media in the Py board. The mutual interaction between superconducting vortices and ferromagnetic domains has been investigated by the magneto-optical imaging technique. For thick Py layers, the stripe magnetic domain pattern guides both the smooth magnetic flux penetration as well as the abrupt vortex avalanches in the Nb film. It is however in thin Py layers without stripe domains where superconducting vortices leave the clearest imprints of locally polarized magnetic moment along their paths. In all cases, we observe that the flux is delayed at the border of the magnetic layer. Our findings open the quest for optimizing magnetic recording of superconducting vortex trajectories.
磁性层的局部极化是一种众所周知的信息存储方法,已在众多应用中得到应用,如广受欢迎的磁性画板玩具、广泛使用的信用卡和计算机硬盘驱动器。在此,我们通过实验表明,类似的原理可用于将在超导薄膜(铌)中传播的量子通量单位(涡旋)的轨迹印刻到坡莫合金(Py)的软磁层中。与磁性画板完全类似,涡旋充当微小的磁刻写器,在Py板中留下极化磁性介质的痕迹。利用磁光成像技术研究了超导涡旋与铁磁畴之间的相互作用。对于较厚的Py层,条纹磁畴图案引导铌膜中的平滑磁通量穿透以及突然的涡旋雪崩。然而,在没有条纹畴的薄Py层中,超导涡旋沿其路径留下了最清晰的局部极化磁矩印记。在所有情况下,我们都观察到磁通量在磁层边界处延迟。我们的发现开启了优化超导涡旋轨迹磁记录的探索。