Aratani Yusuke, Oyama Kohei, Suenobu Tomoyoshi, Yamada Yusuke, Fukuzumi Shunichi
Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA and SENTAN, Japan Science and Technology Agency , Suita, Osaka 565-0871, Japan.
Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University , Osaka 558-8585, Japan.
Inorg Chem. 2016 Jun 20;55(12):5780-6. doi: 10.1021/acs.inorgchem.5b02909. Epub 2016 Jun 6.
Photocatalytic hydroxylation of benzene to phenol was achieved by using O2 as an oxidant as well as an oxygen source with a cyano-bridged polynuclear metal complex containing Fe(II) and Ru(II) incorporated in mesoporous silica-alumina ([Fe(H2O)3]2[Ru(CN)6]@sAl-MCM-41). An apparent turnover number (TON) of phenol production per the monomer unit of [Fe(H2O)3]2[Ru(CN)6] was 41 for 59 h. The cyano-bridged polynuclear metal complex, [Fe(H2O)3]2[Ru(CN)6], exhibited catalytic activity for thermal hydroxylation of benzene by H2O2 in acetonitrile (MeCN), where the apparent TON of phenol production reached 393 for 60 h. The apparent TON increased to 2500 for 114 h by incorporating [Fe(H2O)3]2[Ru(CN)6] in sAl-MCM-41. Additionally, [Fe(H2O)3]2[Ru(CN)6] acts as a water oxidation catalyst by using Ru(bpy)3 (bpy = 2,2'-bipyridine) and Na2S2O8 as a photosensitizer and a sacrificial electron acceptor as evidenced by (18)O-isotope labeling experiments. Photoirradiation of an O2-saturated MeCN solution containing [Fe(H2O)3]2[Ru(CN)6]@sAl-MCM-41 and scandium ion provided H2O2 formation, where photoexcited Ru(CN)6 moiety reduces O2 as indicated by laser flash photolysis measurements. Thus, hydroxylation of benzene to phenol using molecular oxygen photocatalyzed by [Fe(H2O)3]2[Ru(CN)6] occurred via a two-step route; (1) molecular oxygen was photocatalytically reduced to peroxide by using water as an electron donor, and then (2) peroxide thus formed is used as an oxidant for hydroxylation of benzene.
通过使用O₂作为氧化剂以及氧源,利用负载于介孔硅铝酸盐([Fe(H₂O)₃]₂[Ru(CN)₆]@sAl-MCM-41)中的含Fe(II)和Ru(II)的氰基桥连多核金属配合物,实现了苯光催化羟基化为苯酚。在59小时内,以[Fe(H₂O)₃]₂[Ru(CN)₆]的单体单元计,苯酚生成的表观转化数(TON)为41。氰基桥连多核金属配合物[Fe(H₂O)₃]₂[Ru(CN)₆]在乙腈(MeCN)中对H₂O₂热催化苯羟基化反应表现出催化活性,在此反应中,60小时内苯酚生成的表观TON达到393。通过将[Fe(H₂O)₃]₂[Ru(CN)₆]负载于sAl-MCM-41中,114小时内表观TON增加到2500。此外,通过¹⁸O同位素标记实验证明,[Fe(H₂O)₃]₂[Ru(CN)₆]以Ru(bpy)₃(bpy = 2,2'-联吡啶)作为光敏剂、Na₂S₂O₈作为牺牲电子受体时,可作为水氧化催化剂。对含有[Fe(H₂O)₃]₂[Ru(CN)₆]@sAl-MCM-41和钪离子的O₂饱和MeCN溶液进行光照射可生成H₂O₂,激光闪光光解测量表明,光激发的Ru(CN)₆部分可还原O₂。因此,[Fe(H₂O)₃]₂[Ru(CN)₆]光催化利用分子氧将苯羟基化为苯酚是通过两步途径实现的:(1) 以水作为电子供体,将分子氧光催化还原为过氧化物,然后 (2) 由此形成的过氧化物用作苯羟基化的氧化剂。