Institute of Physical Chemistry, University of Innsbruck , Innrain 80-82, A-6020 Innsbruck, Austria.
Institute of Pharmaceutical Technology, University of Innsbruck , Innrain 52c, A-6020 Innsbruck, Austria.
ACS Appl Mater Interfaces. 2016 Jun 29;8(25):16428-43. doi: 10.1021/acsami.6b03566. Epub 2016 Jun 15.
A combination of operando Fourier transform infrared spectroscopy, operando electrochemical-impedance spectroscopy, and moisture-sorption measurements has been exploited to study the adsorption and conduction behavior of H2O and D2O on the technologically important ceramic oxides YSZ (8 mol % Y2O3), ZrO2, and Y2O3. Because the characterization of the chemisorbed and physisorbed water layers is imperative to a full understanding of (electro-)catalytically active doped oxide surfaces and their application in technology, the presented data provide the specific reactivity of these oxides toward water over a pressure-and-temperature parameter range extending up to, e.g., solid-oxide fuel cell (SOFC)-relevant conditions. The characteristic changes of the related infrared bands could directly be linked to the associated conductivity and moisture-sorption data. For YSZ, a sequential dissociative water ("ice-like" layer) and polymeric chained water ("liquid-like") water-adsorption model for isothermal and isobaric conditions over a pressure range of 10(-5) to 24 mbar and a temperature range from room temperature up to 1173 K could be experimentally verified. On pure monoclinic ZrO2, in contrast to highly hydroxylated YSZ and Y2O3, a high surface concentration of OH groups from water chemisorption is absent at any temperature and pressure. Thus, the ice-like and following molecular water layers exhibit no measurable protonic conduction. We show that the water layers, even under these rather extreme experimental conditions, play a key role in understanding the function of these materials. Furthermore, the reported data are supposed to provide an extended basis for the further investigation of close-to-real gas adsorption or catalyzed heterogeneous reactions.
运用原位傅里叶变换红外光谱、原位电化学阻抗谱和湿度测量技术,研究了 H2O 和 D2O 在具有重要技术意义的陶瓷氧化物 YSZ(8mol%Y2O3)、ZrO2 和 Y2O3 上的吸附和传导行为。由于化学吸附和物理吸附水层的特征对于全面理解(电)催化活性掺杂氧化物表面及其在技术中的应用至关重要,因此所呈现的数据提供了这些氧化物在压力和温度参数范围内对水的特定反应性,这些参数范围延伸至例如固体氧化物燃料电池(SOFC)相关条件。相关红外带的特征变化可以直接与相关的电导率和湿度吸附数据相关联。对于 YSZ,可以在 10(-5) 到 24 mbar 的压力范围和室温至 1173 K 的温度范围内,通过实验验证等温等压条件下顺序的离解水(“冰状”层)和聚合链式水(“液态”)水吸附模型。与高度羟基化的 YSZ 和 Y2O3 相反,在纯单斜 ZrO2 上,在任何温度和压力下,水化学吸附的高表面 OH 基团浓度都不存在。因此,冰状和随后的分子水层没有可测量的质子传导。我们表明,即使在这些相当极端的实验条件下,水层在理解这些材料的功能方面也起着关键作用。此外,所报道的数据应该为进一步研究接近实际的气体吸附或催化多相反应提供扩展的基础。