Fuels and Energy Technology Institute & Western Australian School of Mines: Minerals, Energy and Chemical Engineering , Curtin University , Perth , WA 6102 , Australia.
College of Materials Science and Engineering , Fuzhou University , Fuzhou , Fujian 350108 , China.
ACS Appl Mater Interfaces. 2018 Nov 28;10(47):40549-40559. doi: 10.1021/acsami.8b14026. Epub 2018 Nov 15.
Bismuth-based oxides exhibit outstanding oxygen ionic conductivity and fast oxygen surface kinetics and have shown great potential as a highly active component for electrode materials in solid oxide fuel cells (SOFCs). Herein, a Nb-doped LaSrCoFeNbO (LSCFNb) electrode with 40% ErBiO (ESB) composite electrode was successfully fabricated by decoration method and directly assembled on barrier-layer-free yttrium-stabilized zirconia (YSZ) electrolyte cells, achieving a peak power density of 1.32 W cm and excellent stability at 750 °C and 250 mA cm for 100 h. ESB decoration also significantly reduces the activation energy from 214 kJ mol for the O reduction on pristine LSCFNb electrode to 98 kJ mol. Further microstructural analysis reveals that there is a redistribution and migration of the ESB phase in the ESB-LSCFNb composite toward the YSZ electrolyte under the influence of cathodic polarization, forming a thin ESB layer at the cathode/YSZ electrolyte interface. The in situ formed ESB layer not only prevents the direct contact and subsequent reaction between segregated SrO and YSZ electrolytes, but also remarkably promotes the oxygen migration/diffusion at the interface for O reduction reaction, resulting in a remarkable increase in power output and a decrease in activation energy. The present study clearly demonstrated the in situ formation of a highly functional and active ESB protective layer at LSCFNb cobaltite cathode and YSZ electrolyte interface via ESB-decorated LSCFNb composite cathode under SOFC operation conditions.
基于铋的氧化物表现出优异的氧离子电导率和快速的氧表面动力学性能,作为固体氧化物燃料电池(SOFC)中电极材料的高活性组分具有很大的潜力。在此,通过修饰法成功制备了一种掺铌的 LaSrCoFeNbO(LSCFNb)电极,其具有 40% ErBiO(ESB)复合电极,并直接组装在无阻挡层的钇稳定氧化锆(YSZ)电解质电池上,在 750°C 和 250 mA cm 下实现了 1.32 W cm 的峰值功率密度和出色的稳定性,持续 100 小时。ESB 修饰还显著降低了原始 LSCFNb 电极上 O 还原的活化能,从 214 kJ mol 降低到 98 kJ mol。进一步的微观结构分析表明,在阴极极化的影响下,ESB 相在 ESB-LSCFNb 复合材料中发生重新分布和迁移,在阴极/YSZ 电解质界面形成薄的 ESB 层。原位形成的 ESB 层不仅防止了 SrO 和 YSZ 电解质的分离和随后的反应,而且还显著促进了界面处的氧迁移/扩散,从而提高了功率输出并降低了活化能。本研究清楚地证明了,在 SOFC 运行条件下,通过 ESB 修饰的 LSCFNb 复合阴极,在 LSCFNb 钴酸盐阴极和 YSZ 电解质界面处原位形成了一种高功能和活性的 ESB 保护层。