Wang Shuibang, Dougherty Edward J, Danner Robert L
Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
Pharmacol Res. 2016 Sep;111:76-85. doi: 10.1016/j.phrs.2016.02.028. Epub 2016 Jun 4.
Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated nuclear receptor that regulates glucose and lipid metabolism, endothelial function and inflammation. Rosiglitazone (RGZ) and other thiazolidinedione (TZD) synthetic ligands of PPARγ are insulin sensitizers that have been used for the treatment of type 2 diabetes. However, undesirable side effects including weight gain, fluid retention, bone loss, congestive heart failure, and a possible increased risk of myocardial infarction and bladder cancer, have limited the use of TZDs. Therefore, there is a need to better understand PPARγ signaling and to develop safer and more effective PPARγ-directed therapeutics. In addition to PPARγ itself, many PPARγ ligands including TZDs bind to and activate G protein-coupled receptor 40 (GPR40), also known as free fatty acid receptor 1. GPR40 signaling activates stress kinase pathways that ultimately regulate downstream PPARγ responses. Recent studies in human endothelial cells have demonstrated that RGZ activation of GPR40 is essential to the optimal propagation of PPARγ genomic signaling. RGZ/GPR40/p38 MAPK signaling induces and activates PPARγ co-activator-1α, and recruits E1A binding protein p300 to the promoters of target genes, markedly enhancing PPARγ-dependent transcription. Therefore in endothelium, GPR40 and PPARγ function as an integrated signaling pathway. However, GPR40 can also activate ERK1/2, a proinflammatory kinase that directly phosphorylates and inactivates PPARγ. Thus the role of GPR40 in PPARγ signaling may have important implications for drug development. Ligands that strongly activate PPARγ, but do not bind to or activate GPR40 may be safer than currently approved PPARγ agonists. Alternatively, biased GPR40 agonists might be sought that activate both p38 MAPK and PPARγ, but not ERK1/2, avoiding its harmful effects on PPARγ signaling, insulin resistance and inflammation. Such next generation drugs might be useful in treating not only type 2 diabetes, but also diverse chronic and acute forms of vascular inflammation such as atherosclerosis and septic shock.
过氧化物酶体增殖物激活受体γ(PPARγ)是一种配体激活的核受体,可调节葡萄糖和脂质代谢、内皮功能及炎症反应。罗格列酮(RGZ)及其他PPARγ的噻唑烷二酮(TZD)类合成配体是胰岛素增敏剂,已被用于治疗2型糖尿病。然而,包括体重增加、液体潴留、骨质流失、充血性心力衰竭以及心肌梗死和膀胱癌风险可能增加等不良副作用,限制了TZD类药物的使用。因此,有必要更好地理解PPARγ信号传导,并开发更安全、更有效的PPARγ靶向治疗药物。除了PPARγ本身,许多PPARγ配体(包括TZD类)可结合并激活G蛋白偶联受体40(GPR40),其也被称为游离脂肪酸受体1。GPR40信号传导激活应激激酶途径,最终调节下游PPARγ反应。最近在人内皮细胞中的研究表明,RGZ对GPR40的激活对于PPARγ基因组信号的最佳传播至关重要。RGZ/GPR40/p38丝裂原活化蛋白激酶(MAPK)信号传导诱导并激活PPARγ共激活因子-1α,并将E1A结合蛋白p300募集到靶基因启动子处,显著增强PPARγ依赖性转录。因此在内皮细胞中,GPR40和PPARγ作为一个整合的信号通路发挥作用。然而,GPR40也可激活ERK1/2,这是一种促炎激酶,可直接磷酸化并使PPARγ失活。因此,GPR40在PPARγ信号传导中的作用可能对药物开发具有重要意义。强烈激活PPARγ但不结合或激活GPR40的配体可能比目前批准的PPARγ激动剂更安全。或者,可以寻找偏向性GPR40激动剂,其可激活p38 MAPK和PPARγ,但不激活ERK1/2,从而避免其对PPARγ信号传导、胰岛素抵抗和炎症的有害影响。这类下一代药物可能不仅对治疗2型糖尿病有用,而且对治疗各种慢性和急性血管炎症形式(如动脉粥样硬化和脓毒性休克)也有用。