Ekström Andreas, Brijs Jeroen, Clark Timothy D, Gräns Albin, Jutfelt Fredrik, Sandblom Erik
Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden;
Australian Institute of Marine Science, Townsville, Queensland, Australia; and.
Am J Physiol Regul Integr Comp Physiol. 2016 Aug 1;311(2):R440-9. doi: 10.1152/ajpregu.00530.2015. Epub 2016 Jun 8.
Oxygen supply to the heart has been hypothesized to limit cardiac performance and whole animal acute thermal tolerance (CTmax) in fish. We tested these hypotheses by continuously measuring venous oxygen tension (Pvo2) and cardiovascular variables in vivo during acute warming in European perch (Perca fluviatilis) from a reference area during summer (18°C) and a chronically heated area (Biotest enclosure) that receives warm effluent water from a nuclear power plant and is normally 5-10°C above ambient (24°C at the time of experiments). While CTmax was 2.2°C higher in Biotest compared with reference perch, the peaks in cardiac output and heart rate prior to CTmax occurred at statistically similar Pvo2 values (2.3-4.0 kPa), suggesting that cardiac failure occurred at a common critical Pvo2 threshold. Environmental hyperoxia (200% air saturation) increased Pvo2 across temperatures in reference fish, but heart rate still declined at a similar temperature. CTmax of reference fish increased slightly (by 0.9°C) in hyperoxia, but remained significantly lower than in Biotest fish despite an improved cardiac output due to an elevated stroke volume. Thus, while cardiac oxygen supply appears critical to elevate stroke volume at high temperatures, oxygen limitation may not explain the bradycardia and arrhythmia that occur prior to CTmax Acute thermal tolerance and its thermal plasticity can, therefore, only be partially attributed to cardiac failure from myocardial oxygen limitations, and likely involves limiting factors on multiple organizational levels.
有假说认为,心脏的氧气供应会限制鱼类的心脏功能以及整个动物的急性热耐受性(CTmax)。我们通过在夏季从参考区域(18°C)以及长期受热区域(生物测试围栏)对欧洲鲈(Perca fluviatilis)进行急性升温期间连续测量静脉氧分压(Pvo2)和心血管变量,来验证这些假说。该长期受热区域接收来自核电站的温排水,水温通常比环境温度高5 - 10°C(实验时为24°C)。虽然与参考鲈鱼相比,生物测试围栏中的鲈鱼CTmax高2.2°C,但在CTmax之前心输出量和心率的峰值出现在统计学上相似的Pvo2值(2.3 - 4.0 kPa)时,这表明心力衰竭发生在一个共同的临界Pvo2阈值。环境高氧(200%空气饱和度)使参考鱼在不同温度下的Pvo2升高,但心率在相似温度下仍会下降。参考鱼的CTmax在高氧环境中略有增加(0.9°C),但尽管由于每搏输出量增加导致心输出量有所改善,其仍显著低于生物测试围栏中的鱼。因此,虽然心脏氧气供应对于在高温下提高每搏输出量似乎至关重要,但氧限制可能无法解释在CTmax之前出现的心动过缓和心律失常。所以,急性热耐受性及其热可塑性只能部分归因于心肌氧限制导致的心力衰竭,并且可能涉及多个组织层面的限制因素。