Suppr超能文献

解锁 Si-Ge 核壳纳米线量子点场效应晶体管优异性能的起源。

Unlocking the Origin of Superior Performance of a Si-Ge Core-Shell Nanowire Quantum Dot Field Effect Transistor.

机构信息

Department of Physics, Michigan Technological University , Houghton, Michigan 49931, United States.

出版信息

Nano Lett. 2016 Jul 13;16(7):3995-4000. doi: 10.1021/acs.nanolett.6b00359. Epub 2016 Jun 13.

Abstract

The sustained advancement in semiconducting core-shell nanowire technology has unlocked a tantalizing route for making next generation field effect transistor (FET). Understanding how to control carrier mobility of these nanowire channels by applying a gate field is the key to developing a high performance FET. Herein, we have identified the switching mechanism responsible for the superior performance of a Si-Ge core-shell nanowire quantum dot FET over its homogeneous Si counterpart. A quantum transport approach is used to investigate the gate-field modulated switching behavior in electronic current for ultranarrow Si and Si-Ge core-shell nanowire quantum dot FETs. Our calculations reveal that for the ON state, the gate-field induced transverse localization of the wave function restricts the carrier transport to the outer (shell) layer with the pz orbitals providing the pathway for tunneling of electrons in the channels. The higher ON state current in the Si-Ge core-shell nanowire FET is attributed to the pz orbitals that are distributed over the entire channel; in the case of Si nanowire, the participating pz orbital is restricted to a few Si atoms in the channel resulting in a smaller tunneling current. Within the gate bias range considered here, the transconductance is found to be substantially higher in the case of a Si-Ge core-shell nanowire FET than in a Si nanowire FET, which suggests a much higher mobility in the Si-Ge nanowire device.

摘要

半导体核壳纳米线技术的持续进步为制造下一代场效应晶体管(FET)开辟了一条诱人的途径。通过施加栅极场来控制这些纳米线沟道的载流子迁移率是开发高性能 FET 的关键。在此,我们已经确定了导致 Si-Ge 核壳纳米线量子点 FET 优于其同质 Si 对应物的优异性能的开关机制。采用量子输运方法研究了超窄 Si 和 Si-Ge 核壳纳米线量子点 FET 中电子电流的栅极场调制开关行为。我们的计算表明,对于导通状态,栅极场诱导的波函数横向局域化将载流子限制在外壳层中传输,其中 pz 轨道提供了通道中电子隧穿的途径。Si-Ge 核壳纳米线 FET 中较高的导通电流归因于分布在整个通道中的 pz 轨道;在 Si 纳米线的情况下,参与隧穿的 pz 轨道限于通道中的几个 Si 原子,导致隧穿电流较小。在所考虑的栅极偏压范围内,发现 Si-Ge 核壳纳米线 FET 的跨导明显高于 Si 纳米线 FET,这表明 Si-Ge 纳米线器件中的迁移率要高得多。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验