Department of Chemical Engineering and Applied Chemistry, Chungnam National University , 220 Gung-Dong, Yuseong-Gu, Daejeon 305-764, Republic of Korea.
Institute of Research and Development, Duy Tan University , R.809, K7/25 Quang Trung, Da Nang 550000, Viet Nam.
ACS Appl Mater Interfaces. 2016 Jun 29;8(25):16125-35. doi: 10.1021/acsami.6b04947. Epub 2016 Jun 17.
We first report an innovative method, which we refer to as interfacial liquid plasma polymerization, to chemically cross-link ionic liquids (ILs). By this method, a series of all-solid state, free-standing polymer electrolytes is successfully fabricated where ILs are used as building blocks and ethylene oxide-based surfactants are employed as an assisted-cross-linking agent. The thickness of the films is controlled by the plasma exposure time or the ratio of surfactant to ILs. The chemical structure and properties of the polymer electrolyte are characterized by scanning electron microscopy (SEM), Fourier transformation infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), and electrochemical impedance spectroscopy (EIS). Importantly, the underlying polymerization mechanism of the cross-linked IL-based polymer electrolyte is studied to show that fluoroborate or halide anions of ILs together with the aid of a small amount of surfactants having ethylene oxide groups are necessary to form cross-linked network structures of the polymer electrolyte. The ionic conductivity of the obtained polymer electrolyte is 2.28 × 10(-3) S·cm(-1), which is a relatively high value for solid polymer electrolytes synthesized at room temperature. This study can serve as a cornerstone for developing all-solid state polymer electrolytes with promising properties for next-generation electrochemical devices.
我们首次报道了一种创新方法,即界面液体等离子体聚合,用于化学交联离子液体 (ILs)。通过这种方法,成功制备了一系列全固态、独立的聚合物电解质,其中 ILs 用作构建块,氧化乙烯基表面活性剂用作辅助交联剂。薄膜的厚度由等离子体暴露时间或表面活性剂与 ILs 的比例控制。聚合物电解质的化学结构和性质通过扫描电子显微镜 (SEM)、傅里叶变换红外光谱 (FTIR)、核磁共振 (NMR) 光谱、X 射线光电子能谱 (XPS)、差示扫描量热法 (DSC) 和电化学阻抗谱 (EIS) 进行了表征。重要的是,研究了基于交联 IL 的聚合物电解质的聚合机理,表明 IL 的氟硼酸根或卤化物阴离子以及少量具有氧化乙烯基的表面活性剂是形成聚合物电解质交联网络结构所必需的。所得到的聚合物电解质的离子电导率为 2.28×10(-3) S·cm(-1),对于在室温下合成的固态聚合物电解质来说,这是一个相对较高的值。这项研究可以为开发具有下一代电化学器件应用前景的全固态聚合物电解质奠定基础。