Suppr超能文献

用于有机化学物质优先排序和筛查水平暴露评估的皮肤渗透数据和模型。

Dermal permeation data and models for the prioritization and screening-level exposure assessment of organic chemicals.

机构信息

ARC Arnot Research and Consulting Inc., 36 Sproat Avenue, Toronto, ON, Canada, M4M 1W4.

ARC Arnot Research and Consulting Inc., 36 Sproat Avenue, Toronto, ON, Canada, M4M 1W4; Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada, M1C 1A4.

出版信息

Environ Int. 2016 Sep;94:424-435. doi: 10.1016/j.envint.2016.05.025. Epub 2016 Jun 6.

Abstract

High-throughput screening (HTS) models are being developed and applied to prioritize chemicals for more comprehensive exposure and risk assessment. Dermal pathways are possible exposure routes to humans for thousands of chemicals found in personal care products and the indoor environment. HTS exposure models rely on skin permeability coefficient (KP; cm/h) models for exposure predictions. An initial database of approximately 1000 entries for empirically-based KP data was compiled from the literature and a subset of 480 data points for 245 organic chemicals derived from testing with human skin only and using only water as a vehicle was selected. The selected dataset includes chemicals with log octanol-water partition coefficients (KOW) ranging from -6.8 to 7.6 (median=1.8; 95% of the data range from -2.5 to 4.6) and molecular weight (MW) ranging from 18 to 765g/mol (median=180); only 3% >500g/mol. Approximately 53% of the chemicals in the database have functional groups which are ionizable in the pH range of 6 to 7.4, with 31% being appreciably ionized. The compiled log KP values ranged from -5.8 to 0.1cm/h (median=-2.6). The selected subset of the KP data was then used to evaluate eight representative KP models that can be readily applied for HTS assessments, i.e., parameterized with KOW and MW. The analysis indicates that a version of the SKINPERM model performs the best against the selected dataset. Comparisons of representative KP models against model input parameter property ranges (sensitivity analysis) and against chemical datasets requiring human health assessment were conducted to identify regions of chemical properties that should be tested to address uncertainty in KP models and HTS exposure assessments.

摘要

高通量筛选 (HTS) 模型正在被开发和应用,以优先考虑化学物质,进行更全面的暴露和风险评估。皮肤途径是人体接触个人护理产品和室内环境中数千种化学物质的可能暴露途径。HTS 暴露模型依赖于皮肤渗透系数 (KP;cm/h) 模型进行暴露预测。从文献中编译了一个大约 1000 个基于经验的 KP 数据的初始数据库,并选择了一个子集,其中包含仅使用人体皮肤和仅用水作为载体进行测试的 245 种有机化学品的 480 个数据点,这些化学品的对数辛醇-水分配系数 (KOW) 范围从-6.8 到 7.6(中位数=1.8;95%的数据范围从-2.5 到 4.6),分子量 (MW) 范围从 18 到 765g/mol(中位数=180);只有 3%>500g/mol。数据库中约 53%的化学物质在 pH 值为 6 到 7.4 的范围内具有可电离的官能团,其中 31%具有明显的电离性。编译的 log KP 值范围从-5.8 到 0.1cm/h(中位数=-2.6)。然后,使用所选的 KP 数据子集来评估 8 种可用于 HTS 评估的代表性 KP 模型,即使用 KOW 和 MW 进行参数化。分析表明,SKINPERM 模型的一个版本针对所选数据集表现最佳。对代表性 KP 模型进行了比较,包括与模型输入参数属性范围(敏感性分析)的比较,以及与需要进行人类健康评估的化学数据集的比较,以确定应测试化学性质的区域,以解决 KP 模型和 HTS 暴露评估中的不确定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验