Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA.
Joint Institute for Regional Earth System Science and Engineering, University of California at Los Angeles, 607 Charles E Young Drive East, Young Hall #4242, Los Angeles, CA, 90095-7228, USA.
Glob Chang Biol. 2016 Jul;22(7):2596-607. doi: 10.1111/gcb.13264. Epub 2016 Apr 20.
A central challenge in global ecology is the identification of key functional processes in ecosystems that scale, but do not require, data for individual species across landscapes. Given that nearly all tree species form symbiotic relationships with one of two types of mycorrhizal fungi - arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi - and that AM- and ECM-dominated forests often have distinct nutrient economies, the detection and mapping of mycorrhizae over large areas could provide valuable insights about fundamental ecosystem processes such as nutrient cycling, species interactions, and overall forest productivity. We explored remotely sensed tree canopy spectral properties to detect underlying mycorrhizal association across a gradient of AM- and ECM-dominated forest plots. Statistical mining of reflectance and reflectance derivatives across moderate/high-resolution Landsat data revealed distinctly unique phenological signals that differentiated AM and ECM associations. This approach was trained and validated against measurements of tree species and mycorrhizal association across ~130 000 trees throughout the temperate United States. We were able to predict 77% of the variation in mycorrhizal association distribution within the forest plots (P < 0.001). The implications for this work move us toward mapping mycorrhizal association globally and advancing our understanding of biogeochemical cycling and other ecosystem processes.
全球生态学的一个核心挑战是确定能够在景观尺度上进行扩展的关键功能过程,但不需要对个体物种进行数据测量。鉴于几乎所有树种都与两种类型的菌根真菌(丛枝菌根真菌和外生菌根真菌)形成共生关系,而 AM 和 ECM 占主导地位的森林通常具有不同的养分经济,因此对大型区域内菌根的检测和绘图可以为了解养分循环、物种相互作用和整体森林生产力等基本生态系统过程提供有价值的见解。我们探索了遥感树冠光谱特性,以检测 AM 和 ECM 占主导地位的森林样地之间潜在的菌根关联。对中等/高分辨率 Landsat 数据的反射率和反射率导数进行统计挖掘,揭示了区分 AM 和 ECM 关联的独特物候信号。该方法是针对美国温带地区约 130000 棵树的树种和菌根关联测量数据进行训练和验证的。我们能够预测森林样地内菌根关联分布的 77%变化(P<0.001)。这项工作的意义在于推动了全球范围内菌根关联的绘图,并增进了我们对生物地球化学循环和其他生态系统过程的理解。