Andrade-Talavera Yuniesky, Duque-Feria Paloma, Paulsen Ole, Rodríguez-Moreno Antonio
Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013 Seville, Spain.
Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK.
Cereb Cortex. 2016 Aug;26(8):3637-3654. doi: 10.1093/cercor/bhw172. Epub 2016 Jun 9.
Spike timing-dependent plasticity (STDP) is a Hebbian learning rule important for synaptic refinement during development and for learning and memory in the adult. Given the importance of the hippocampus in memory, surprisingly little is known about the mechanisms and functions of hippocampal STDP. In the present work, we investigated the requirements for induction of hippocampal spike timing-dependent long-term potentiation (t-LTP) and spike timing-dependent long-term depression (t-LTD) and the mechanisms of these 2 forms of plasticity at CA3-CA1 synapses in young (P12-P18) mouse hippocampus. We found that both t-LTP and t-LTD can be induced at hippocampal CA3-CA1 synapses by pairing presynaptic activity with single postsynaptic action potentials at low stimulation frequency (0.2 Hz). Both t-LTP and t-LTD require NMDA-type glutamate receptors for their induction, but the location and properties of these receptors are different: While t-LTP requires postsynaptic ionotropic NMDA receptor function, t-LTD does not, and whereas t-LTP is blocked by antagonists at GluN2A and GluN2B subunit-containing NMDA receptors, t-LTD is blocked by GluN2C or GluN2D subunit-preferring NMDA receptor antagonists. Both t-LTP and t-LTD require postsynaptic Ca(2+) for their induction. Induction of t-LTD also requires metabotropic glutamate receptor activation, phospholipase C activation, postsynaptic IP3 receptor-mediated Ca(2+) release from internal stores, postsynaptic endocannabinoid (eCB) synthesis, activation of CB1 receptors and astrocytic signaling, possibly via release of the gliotransmitter d-serine. We furthermore found that presynaptic calcineurin is required for t-LTD induction. t-LTD is expressed presynaptically as indicated by fluctuation analysis, paired-pulse ratio, and rate of use-dependent depression of postsynaptic NMDA receptor currents by MK801. The results show that CA3-CA1 synapses display both NMDA receptor-dependent t-LTP and t-LTD during development and identify a presynaptic form of hippocampal t-LTD similar to that previously described at neocortical synapses during development.
尖峰时间依赖性可塑性(STDP)是一种赫布学习规则,对发育过程中的突触精细化以及成体的学习和记忆都很重要。鉴于海马体在记忆中的重要性,令人惊讶的是,关于海马体STDP的机制和功能却知之甚少。在本研究中,我们调查了幼龄(P12 - P18)小鼠海马体中CA3 - CA1突触处诱导海马体尖峰时间依赖性长时程增强(t - LTP)和尖峰时间依赖性长时程抑制(t - LTD)的条件,以及这两种可塑性形式的机制。我们发现,通过在低刺激频率(0.2 Hz)下将突触前活动与单个突触后动作电位配对,t - LTP和t - LTD均可在海马体CA3 - CA1突触处诱导产生。t - LTP和t - LTD的诱导均需要NMDA型谷氨酸受体,但这些受体的位置和特性有所不同:t - LTP需要突触后离子型NMDA受体功能,而t - LTD则不需要;t - LTP被含GluN2A和GluN2B亚基的NMDA受体拮抗剂阻断,而t - LTD被偏好GluN2C或GluN2D亚基的NMDA受体拮抗剂阻断。t - LTP和t - LTD的诱导均需要突触后Ca(2+)。t - LTD的诱导还需要代谢型谷氨酸受体激活、磷脂酶C激活、突触后IP3受体介导的内质网Ca(2+)释放、突触后内源性大麻素(eCB)合成、CB1受体激活以及星形胶质细胞信号传导,可能是通过胶质递质d - 丝氨酸的释放。我们还发现,t - LTD的诱导需要突触前钙调神经磷酸酶。波动分析、双脉冲比率以及MK801对突触后NMDA受体电流的使用依赖性抑制率表明,t - LTD在突触前表达。结果表明,CA3 - CA1突触在发育过程中表现出NMDA受体依赖性的t - LTP和t - LTD,并确定了一种海马体t - LTD的突触前形式,类似于先前在发育过程中于新皮质突触处描述的形式。