Nelson Nichalas, Broadie Kendal
Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA.
Department of Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA.
Sci Rep. 2025 Jul 16;15(1):25744. doi: 10.1038/s41598-025-11528-3.
Critical periods enable early-life synaptic connectivity optimization whereby initial sensory experience remodels circuits to a variable environment. In the Drosophila juvenile brain, synapse remodeling occurs within the precisely-mapped olfactory circuit, which has an extensively characterized, manageably short (< 1 week) critical period. In this brain circuit, single receptor olfactory sensory neuron (OSN) classes synapse onto single projection neurons extending to the central mushroom body learning/memory center. Critical period odorant experience drives OSN synapse remodeling, which can only be reversed during this brief interval. Our objective is to dissect intercellular signaling pathways from neurons to glial phagocytes sculpting synapse elimination in response to critical period experience. We find critical period experience causes externalized phosphatidylserine (PS) exposure in activated OSN synaptic glomeruli in an experiential dose-dependent mechanism. We discover that genetic knockdown of phosphatidylserine synthase inhibits critical period experience-dependent pruning of these synaptic glomeruli. We show a genetic interaction in trans-heterozygous mutants of phosphatidylserine synthase and Draper (mammalian MEGF10), the well-conserved glial engulfment receptor that binds phosphatidylserine, with double trans-heterozygotes blocking critical period experience-dependent pruning. This interaction mechanistically links phosphatidylserine signaling to glial phagocytosis synapse elimination. We identify the OSN scramblase that transports phosphatidylserine from the synaptic membrane inner to outer leaflet, and demonstrate phosphatidylserine externalization is rate-limiting for experience-dependent synaptic glomeruli pruning. We discover glial insulin receptors direct experience-dependent glial infiltration phagocytosis. We find activated glial insulin receptor signaling elevates critical period synapse pruning. Together this work identifies coupled intercellular signaling pathways from target neurons to glial phagocytes orchestrating experience-dependent synapse elimination.
关键期能够使早期生命中的突触连接得到优化,从而使最初的感官体验将神经回路重塑以适应多变的环境。在果蝇幼体大脑中,突触重塑发生在精确映射的嗅觉回路中,该回路具有广泛表征且易于控制的短(<1周)关键期。在这个脑回路中,单个受体嗅觉感觉神经元(OSN)类群与延伸至中央蘑菇体学习/记忆中心的单个投射神经元形成突触。关键期的气味体验驱动OSN突触重塑,而这种重塑只能在这个短暂的间隔内被逆转。我们的目标是剖析从神经元到神经胶质吞噬细胞的细胞间信号通路,这些通路在关键期体验的作用下塑造突触消除过程。我们发现关键期体验会以一种依赖于体验剂量的机制,导致活化的OSN突触小球中外化磷脂酰丝氨酸(PS)的暴露。我们发现磷脂酰丝氨酸合酶的基因敲低会抑制这些突触小球的关键期体验依赖性修剪。我们展示了磷脂酰丝氨酸合酶和Draper(哺乳动物的MEGF10,一种与磷脂酰丝氨酸结合的高度保守的神经胶质吞噬受体)的反式杂合突变体之间的遗传相互作用,双反式杂合体会阻断关键期体验依赖性修剪。这种相互作用从机制上将磷脂酰丝氨酸信号传导与神经胶质吞噬性突触消除联系起来。我们鉴定出将磷脂酰丝氨酸从突触膜内小叶转运到外小叶的OSN翻转酶,并证明磷脂酰丝氨酸的外化是体验依赖性突触小球修剪的限速步骤。我们发现神经胶质胰岛素受体指导体验依赖性神经胶质浸润吞噬作用。我们发现活化的神经胶质胰岛素受体信号传导会增强关键期突触修剪。这项工作共同确定了从靶神经元到神经胶质吞噬细胞的耦合细胞间信号通路协调体验依赖性突触消除。