Suppr超能文献

探索实验方法与蛋白质复合物中突变后结合亲和力变化预测器性能之间的相互作用。

Exploring the interplay between experimental methods and the performance of predictors of binding affinity change upon mutations in protein complexes.

作者信息

Geng Cunliang, Vangone Anna, Bonvin Alexandre M J J

机构信息

Computational Structural Biology Group, Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands.

出版信息

Protein Eng Des Sel. 2016 Aug;29(8):291-299. doi: 10.1093/protein/gzw020. Epub 2016 Jun 9.

Abstract

Reliable prediction of binding affinity changes (ΔΔG) upon mutations in protein complexes relies not only on the performance of computational methods but also on the availability and quality of experimental data. Binding affinity changes can be measured by various experimental methods with different accuracies and limitations. To understand the impact of these on the prediction of binding affinity change, we present the Database of binding Affinity Change Upon Mutation (DACUM), a database of 1872 binding affinity changes upon single-point mutations, a subset of the SKEMPI database (Moal,I.H. and Fernández-Recio,J. Bioinformatics, 2012;28:2600-2607) extended with information on the experimental methods used for ΔΔG measurements. The ΔΔG data were classified into different data sets based on the experimental method used and the position of the mutation (interface and non-interface). We tested the prediction performance of the original HADDOCK score, a newly trained version of it and mutation Cutoff Scanning Matrix (Pires,D.E.V., Ascher,D.B. and Blundell,T.L. Bioinformatics 2014;30:335-342), one of the best reported ΔΔG predictors so far, on these various data sets. Our results demonstrate a strong impact of the experimental methods on the performance of binding affinity change predictors for protein complexes. This underscores the importance of properly considering and carefully choosing experimental methods in the development of novel binding affinity change predictors. The DACUM database is available online at https://github.com/haddocking/DACUM.

摘要

可靠预测蛋白质复合物突变后的结合亲和力变化(ΔΔG)不仅依赖于计算方法的性能,还取决于实验数据的可用性和质量。结合亲和力变化可以通过各种实验方法来测量,这些方法具有不同的准确性和局限性。为了了解这些因素对结合亲和力变化预测的影响,我们推出了突变后结合亲和力变化数据库(DACUM),这是一个包含1872个单点突变结合亲和力变化的数据库,是SKEMPI数据库(Moal,I.H.和Fernández-Recio,J.《生物信息学》,2012;28:2600 - 2607)的一个子集,并扩展了用于ΔΔG测量的实验方法的信息。根据所使用的实验方法和突变位置(界面和非界面),将ΔΔG数据分类到不同的数据集中。我们在这些不同的数据集中测试了原始HADDOCK评分、其新训练版本以及突变截止扫描矩阵(Pires,D.E.V.,Ascher,D.B.和Blundell,T.L.《生物信息学》2014;30:335 - 342)的预测性能,突变截止扫描矩阵是目前报道的最好的ΔΔG预测器之一。我们的结果表明,实验方法对蛋白质复合物结合亲和力变化预测器的性能有很大影响。这强调了在开发新型结合亲和力变化预测器时正确考虑和谨慎选择实验方法的重要性。DACUM数据库可在https://github.com/haddocking/DACUM在线获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验