Suppr超能文献

Flex ddG:基于 Rosetta 整体论的突变引起的蛋白质-蛋白质结合亲和力变化的估计。

Flex ddG: Rosetta Ensemble-Based Estimation of Changes in Protein-Protein Binding Affinity upon Mutation.

机构信息

Graduate Program in Bioinformatics , University of California San Francisco , San Francisco , California , United States of America.

California Institute for Quantitative Biosciences , University of California San Francisco , San Francisco , California , United States of America.

出版信息

J Phys Chem B. 2018 May 31;122(21):5389-5399. doi: 10.1021/acs.jpcb.7b11367. Epub 2018 Feb 15.

Abstract

Computationally modeling changes in binding free energies upon mutation (interface ΔΔ G) allows large-scale prediction and perturbation of protein-protein interactions. Additionally, methods that consider and sample relevant conformational plasticity should be able to achieve higher prediction accuracy over methods that do not. To test this hypothesis, we developed a method within the Rosetta macromolecular modeling suite (flex ddG) that samples conformational diversity using "backrub" to generate an ensemble of models and then applies torsion minimization, side chain repacking, and averaging across this ensemble to estimate interface ΔΔ G values. We tested our method on a curated benchmark set of 1240 mutants, and found the method outperformed existing methods that sampled conformational space to a lesser degree. We observed considerable improvements with flex ddG over existing methods on the subset of small side chain to large side chain mutations, as well as for multiple simultaneous non-alanine mutations, stabilizing mutations, and mutations in antibody-antigen interfaces. Finally, we applied a generalized additive model (GAM) approach to the Rosetta energy function; the resulting nonlinear reweighting model improved the agreement with experimentally determined interface ΔΔ G values but also highlighted the necessity of future energy function improvements.

摘要

通过计算建模突变(界面 ΔΔG)对结合自由能的影响,可以大规模预测和干扰蛋白质-蛋白质相互作用。此外,考虑并采样相关构象可塑性的方法应该能够比不考虑构象可塑性的方法实现更高的预测准确性。为了验证这一假设,我们在 Rosetta 大分子建模套件中开发了一种方法(flex ddG),该方法使用“backrub”来生成模型的集合,并对其进行扭转最小化、侧链重新组装和平均处理,以估算界面 ΔΔG 值。我们在一个经过精心整理的 1240 个突变体基准测试集上测试了我们的方法,发现该方法的性能优于其他采样构象空间程度较低的方法。我们观察到,在小侧链到大侧链突变、多个同时非丙氨酸突变、稳定突变和抗体-抗原界面突变等亚组中,flex ddG 相对于现有方法有显著的改进。最后,我们将广义加性模型(GAM)方法应用于 Rosetta 能量函数;由此产生的非线性重新加权模型提高了与实验确定的界面 ΔΔG 值的一致性,但也突出了未来能量函数改进的必要性。

相似文献

引用本文的文献

3
Therapeutic Antibodies for Infectious Diseases: Recent Past, Present, and Future.用于传染病的治疗性抗体:过去、现在与未来
Biochemistry. 2025 Aug 19;64(16):3487-3494. doi: 10.1021/acs.biochem.5c00192. Epub 2025 Aug 7.

本文引用的文献

4
The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design.用于大分子建模与设计的罗塞塔全原子能量函数。
J Chem Theory Comput. 2017 Jun 13;13(6):3031-3048. doi: 10.1021/acs.jctc.7b00125. Epub 2017 May 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验