Askerka Mikhail, Maurer Reinhard J, Batista Victor S, Tully John C
Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.
Phys Rev Lett. 2016 May 27;116(21):217601. doi: 10.1103/PhysRevLett.116.217601. Epub 2016 May 25.
An accurate description of nonadiabatic energy relaxation is crucial for modeling atomistic dynamics at metal surfaces. Interfacial energy transfer due to electron-hole pair excitations coupled to motion of molecular adsorbates is often simulated by Langevin molecular dynamics with electronic friction. Here, we present calculations of the full electronic friction tensor by using first order time-dependent perturbation theory at the density functional theory level. We show that the friction tensor is generally anisotropic and nondiagonal, as found for hydrogen atom on Pd(100) and CO on Cu(100) surfaces. This implies that electron-hole pair induced nonadiabatic coupling at metal surfaces leads to friction-induced mode coupling, therefore, opening an additional channel for energy redistribution. We demonstrate the robustness and accuracy of our results by direct comparison to established methods and experimental data.
准确描述非绝热能量弛豫对于模拟金属表面的原子动力学至关重要。由于电子 - 空穴对激发与分子吸附质运动耦合而产生的界面能量转移通常通过带有电子摩擦的朗之万分子动力学来模拟。在此,我们在密度泛函理论水平上使用一阶含时微扰理论来计算完整的电子摩擦张量。我们表明,摩擦张量通常是各向异性且非对角的,这在Pd(100)表面的氢原子和Cu(100)表面的CO上已被发现。这意味着金属表面电子 - 空穴对诱导的非绝热耦合会导致摩擦诱导的模式耦合,因此,开辟了一个额外的能量重新分布通道。我们通过与既定方法和实验数据直接比较,证明了我们结果的稳健性和准确性。