Hörmann Lukas, Stark Wojciech G, Maurer Reinhard J
Department of Chemistry, University of Warwick, Coventry, UK.
Department of Physics, University of Warwick, Coventry, UK.
NPJ Comput Mater. 2025;11(1):196. doi: 10.1038/s41524-025-01691-6. Epub 2025 Jul 1.
Machine learning and data-driven methods have started to transform the study of surfaces and interfaces. Here, we review how data-driven methods and machine learning approaches complement simulation workflows and contribute towards tackling grand challenges in computational surface science from 2D materials to interface engineering and electrocatalysis. Challenges remain, including the scarcity of large datasets and the need for more electronic structure methods for interfaces.
机器学习和数据驱动方法已开始改变对表面和界面的研究。在此,我们回顾数据驱动方法和机器学习方法如何补充模拟工作流程,并有助于应对从二维材料到界面工程和电催化等计算表面科学中的重大挑战。挑战依然存在,包括大型数据集的稀缺以及对更多界面电子结构方法的需求。