Suppr超能文献

金属表面解离化学吸附势垒两侧平动能量的精确反应概率

Accurate Reaction Probabilities for Translational Energies on Both Sides of the Barrier of Dissociative Chemisorption on Metal Surfaces.

作者信息

Gerrits Nick, Jackson Bret, Bogaerts Annemie

机构信息

Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Post Office Box 9502, 2300 RA Leiden, Netherlands.

Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, BE-2610, Wilrijk, Antwerp, Belgium.

出版信息

J Phys Chem Lett. 2024 Mar 7;15(9):2566-2572. doi: 10.1021/acs.jpclett.3c03408. Epub 2024 Feb 28.

Abstract

Molecular dynamics simulations are essential for a better understanding of dissociative chemisorption on metal surfaces, which is often the rate-controlling step in heterogeneous and plasma catalysis. The workhorse quasi-classical trajectory approach ubiquitous in molecular dynamics is able to accurately predict reactivity only for high translational and low vibrational energies. In contrast, catalytically relevant conditions generally involve low translational and elevated vibrational energies. Existing quantum dynamics approaches are intractable or approximate as a result of the large number of degrees of freedom present in molecule-metal surface reactions. Here, we extend a ring polymer molecular dynamics approach to fully include, for the first time, the degrees of freedom of a moving metal surface. With this approach, experimental sticking probabilities for the dissociative chemisorption of methane on Pt(111) are reproduced for a large range of translational and vibrational energies by including nuclear quantum effects and employing full-dimensional simulations.

摘要

分子动力学模拟对于更好地理解金属表面的解离化学吸附至关重要,而解离化学吸附通常是多相催化和等离子体催化中的速率控制步骤。分子动力学中普遍使用的经典轨迹方法仅能在高平动能量和低振动能量下准确预测反应活性。相比之下,催化相关条件通常涉及低平动能量和升高的振动能量。由于分子-金属表面反应中存在大量自由度,现有的量子动力学方法难以处理或只能采用近似方法。在此,我们扩展了一种环聚合物分子动力学方法,首次全面纳入移动金属表面的自由度。通过这种方法,通过纳入核量子效应并进行全维模拟,在大范围的平动和振动能量下再现了甲烷在Pt(111)上解离化学吸附的实验 sticking 概率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d60/10926167/5a94cbec0701/jz3c03408_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验