Li Xin, Cai Yu, Moloney Brendan, Chen Yiyi, Huang Wei, Woods Mark, Coakley Fergus V, Rooney William D, Garzotto Mark G, Springer Charles S
Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, United States.
Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, United States.
J Magn Reson. 2016 Aug;269:104-112. doi: 10.1016/j.jmr.2016.05.018. Epub 2016 May 28.
Dynamic-Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) has been used widely for clinical applications. Pharmacokinetic modeling of DCE-MRI data that extracts quantitative contrast reagent/tissue-specific model parameters is the most investigated method. One of the primary challenges in pharmacokinetic analysis of DCE-MRI data is accurate and reliable measurement of the arterial input function (AIF), which is the driving force behind all pharmacokinetics. Because of effects such as inflow and partial volume averaging, AIF measured from individual arteries sometimes require amplitude scaling for better representation of the blood contrast reagent (CR) concentration time-courses. Empirical approaches like blinded AIF estimation or reference tissue AIF derivation can be useful and practical, especially when there is no clearly visible blood vessel within the imaging field-of-view (FOV). Similarly, these approaches generally also require magnitude scaling of the derived AIF time-courses. Since the AIF varies among individuals even with the same CR injection protocol and the perfect scaling factor for reconstructing the ground truth AIF often remains unknown, variations in estimated pharmacokinetic parameters due to varying AIF scaling factors are of special interest. In this work, using simulated and real prostate cancer DCE-MRI data, we examined parameter variations associated with AIF scaling. Our results show that, for both the fast-exchange-limit (FXL) Tofts model and the water exchange sensitized fast-exchange-regime (FXR) model, the commonly fitted CR transfer constant (K(trans)) and the extravascular, extracellular volume fraction (ve) scale nearly proportionally with the AIF, whereas the FXR-specific unidirectional cellular water efflux rate constant, kio, and the CR intravasation rate constant, kep, are both AIF scaling insensitive. This indicates that, for DCE-MRI of prostate cancer and possibly other cancers, kio and kep may be more suitable imaging biomarkers for cross-platform, multicenter applications. Data from our limited study cohort show that kio correlates with Gleason scores, suggesting that it may be a useful biomarker for prostate cancer disease progression monitoring.
动态对比增强磁共振成像(DCE-MRI)已广泛应用于临床。对DCE-MRI数据进行药代动力学建模以提取定量造影剂/组织特异性模型参数是研究最多的方法。DCE-MRI数据分析中药代动力学分析的主要挑战之一是准确可靠地测量动脉输入函数(AIF),它是所有药代动力学的驱动力。由于流入和部分容积平均等效应,从单个动脉测量的AIF有时需要进行幅度缩放,以便更好地表示血液造影剂(CR)浓度随时间的变化过程。像盲法AIF估计或参考组织AIF推导这样的经验方法可能是有用且实用的,特别是当成像视野(FOV)内没有清晰可见的血管时。同样,这些方法通常也需要对推导的AIF时间过程进行幅度缩放。由于即使采用相同的CR注射方案,AIF在个体之间也会有所不同,并且重建真实AIF的理想缩放因子通常仍然未知,因此由于AIF缩放因子的变化而导致的估计药代动力学参数的变化特别令人关注。在这项工作中,我们使用模拟和真实的前列腺癌DCE-MRI数据,研究了与AIF缩放相关的参数变化。我们的结果表明,对于快速交换极限(FXL)Tofts模型和水交换敏感快速交换机制(FXR)模型,通常拟合的CR转运常数(K(trans))和血管外、细胞外容积分数(ve)几乎与AIF成比例缩放,而FXR特有的单向细胞水流出速率常数kio和CR内渗速率常数kep对AIF缩放均不敏感。这表明,对于前列腺癌以及可能其他癌症的DCE-MRI,kio和kep可能是更适合跨平台、多中心应用的成像生物标志物。我们有限研究队列的数据表明,kio与 Gleason评分相关,这表明它可能是用于前列腺癌疾病进展监测的有用生物标志物。