Suppr超能文献

肥厚型心肌病患者就诊时心电图模式对预测心脏性死亡长期风险的价值

Usefulness of Electrocardiographic Patterns at Presentation to Predict Long-term Risk of Cardiac Death in Patients With Hypertrophic Cardiomyopathy.

作者信息

Biagini Elena, Pazzi Chiara, Olivotto Iacopo, Musumeci Beatrice, Limongelli Giuseppe, Boriani Giuseppe, Pacileo Giuseppe, Mastromarino Vittoria, Bacchi Reggiani Maria Letizia, Lorenzini Massimiliano, Lai Francesco, Berardini Alessandra, Mingardi Francesca, Rosmini Stefania, Resciniti Elvira, Borghi Claudia, Autore Camillo, Cecchi Franco, Rapezzi Claudio

机构信息

Cardiology, Department of Experimental Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy.

Cardiothoracovascular Department, Referral Center for Myocardial Diseases, Azienda Ospedaliera Universitaria Careggi, Florence, Italy.

出版信息

Am J Cardiol. 2016 Aug 1;118(3):432-9. doi: 10.1016/j.amjcard.2016.05.023. Epub 2016 May 15.

Abstract

The objective of this study was to investigate the prognostic significance of 12-lead electrocardiogram (ECG) patterns in a large multicenter cohort of patients with hypertrophic cardiomyopathy; 1,004 consecutive patients with hypertrophic cardiomyopathy and a recorded standard ECG (64% men, mean age 50 ± 16 years) were evaluated at 4 Italian centers. The study end points were sudden cardiac death (SCD) or surrogates, including appropriate implanted cardiac defibrillator discharge and resuscitated cardiac arrest and major cardiovascular events (including SCD or surrogates and death due to heart failure, cardioembolic stroke, or heart transplantation). Prevalence of baseline electrocardiographic characteristics was: normal ECG 4%, ST-segment depression 56%, pseudonecrosis waves 33%, "pseudo-ST-segment elevation myocardial infarction (STEMI)" pattern 17%, QRS duration ≥120 ms 17%, giant inverted T waves 6%, and low QRS voltages 3%. During a mean follow-up of 7.4 ± 6.8 years, 77 patients experienced SCD or surrogates and 154 patients experienced major cardiovascular events. Independent predictors of SCD or surrogates were unexplained syncope (hazard ratio [HR] 2.5, 95% confidence interval [CI] 1.4 to 4.5, p = 0.003), left ventricular ejection fraction <50% (HR 3.5, 95% CI 1.9 to 6.7, p = 0.0001), nonsustained ventricular tachycardia (HR 1.7, 95% CI 1.1 to 2.6, p = 0.027), pseudo-STEMI pattern (HR 2.3, 95% CI 1.4 to 3.8, p = 0.001), QRS duration ≥120 ms (HR 1.8, 95% CI 1.1 to 3.0, p = 0.033), and low QRS voltages (HR 2.3, 95% CI 1.01 to 5.1, p = 0.048). Independent predictors of major cardiovascular events were age (HR 1.02, 95% CI 1.01 to 1.03, p = 0.0001), LV ejection fraction <50% (HR 3.73, 95% CI 2.39 to 5.83, p = 0.0001), pseudo-STEMI pattern (HR 1.66, 95% CI 1.13 to 2.45, p = 0.010), QRS duration ≥120 ms (HR 1.69, 95% CI 1.16 to 2.47, p = 0.007), and prolonged QTc interval (HR 1.68, 95% CI 1.21 to 2.34, p = 0.002). In conclusion, a detailed qualitative and quantitative electrocardiographic analyses provide independent predictors of prognosis that could be integrated with the available score systems to improve the power of the current model.

摘要

本研究的目的是在一个大型多中心肥厚型心肌病患者队列中,探讨12导联心电图(ECG)模式的预后意义;在意大利的4个中心对1004例连续的肥厚型心肌病患者及记录的标准心电图进行了评估(男性占64%,平均年龄50±16岁)。研究终点为心源性猝死(SCD)或替代指标,包括合适的植入式心脏除颤器放电、复苏的心脏骤停以及主要心血管事件(包括SCD或替代指标以及因心力衰竭、心源性栓塞性卒中或心脏移植导致的死亡)。基线心电图特征的患病率为:正常心电图4%,ST段压低56%,假性坏死波33%,“假性ST段抬高型心肌梗死(STEMI)”模式17%,QRS时限≥120 ms 17%,巨大倒置T波6%,以及低QRS电压3%。在平均7.4±6.8年的随访期间,77例患者发生了SCD或替代指标,154例患者发生了主要心血管事件。SCD或替代指标的独立预测因素为不明原因的晕厥(风险比[HR] 2.5,95%置信区间[CI] 1.4至4.5,p = 0.003)、左心室射血分数<50%(HR 3.5,95% CI 1.9至6.7,p = 0.0001)、非持续性室性心动过速(HR 1.7,95% CI 1.1至2.6,p = 0.027)、假性STEMI模式(HR 2.3,95% CI 1.4至3.8,p = 0.001)、QRS时限≥120 ms(HR 1.8,95% CI 1.1至3.0,p = 0.033)以及低QRS电压(HR 2.3,95% CI 1.01至5.1,p = 0.048)。主要心血管事件的独立预测因素为年龄(HR 1.02,95% CI 1.01至1.03,p = 0.0001)、左心室射血分数<50%(HR 3.73,95% CI 2.39至5.83,p = 0.0001)、假性STEMI模式(HR 1.66,95% CI 1.13至2.45,p = 0.010)、QRS时限≥120 ms(HR 1.69,95% CI 1.16至2.47,p = 0.007)以及QTc间期延长(HR 1.68,95% CI 1.21至2.34,p = 0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验