Suppr超能文献

一种新的具有指数函数自适应步长的改进人工蜂群算法。

A New Modified Artificial Bee Colony Algorithm with Exponential Function Adaptive Steps.

机构信息

Department of Mathematics, Sichuan University of Science & Engineering, Zigong, Sichuan 643000, China.

Department of Mathematics, Sichuan University of Science & Engineering, Zigong, Sichuan 643000, China; Key Laboratory of Higher Education of Sichuan Province for Enterprise Informationalization and Internet of Things, Zigong, Sichuan 643000, China.

出版信息

Comput Intell Neurosci. 2016;2016:9820294. doi: 10.1155/2016/9820294. Epub 2016 May 17.

Abstract

As one of the most recent popular swarm intelligence techniques, artificial bee colony algorithm is poor at exploitation and has some defects such as slow search speed, poor population diversity, the stagnation in the working process, and being trapped into the local optimal solution. The purpose of this paper is to develop a new modified artificial bee colony algorithm in view of the initial population structure, subpopulation groups, step updating, and population elimination. Further, depending on opposition-based learning theory and the new modified algorithms, an improved S-type grouping method is proposed and the original way of roulette wheel selection is substituted through sensitivity-pheromone way. Then, an adaptive step with exponential functions is designed for replacing the original random step. Finally, based on the new test function versions CEC13, six benchmark functions with the dimensions D = 20 and D = 40 are chosen and applied in the experiments for analyzing and comparing the iteration speed and accuracy of the new modified algorithms. The experimental results show that the new modified algorithm has faster and more stable searching and can quickly increase poor population diversity and bring out the global optimal solutions.

摘要

作为最近流行的群体智能技术之一,人工蜂群算法在开发方面存在缺陷,存在搜索速度慢、种群多样性差、工作过程停滞、陷入局部最优解等问题。本文针对初始种群结构、子群划分、步长更新和种群淘汰等方面,对人工蜂群算法进行了改进。在此基础上,基于对抗体思想和改进的算法,提出了一种改进的 S 型分组方法,用敏感性信息素的方式取代了原有的轮盘赌选择方式。然后,设计了一个基于指数函数的自适应步长来替代原有的随机步长。最后,在新的测试函数版本 CEC13 的基础上,选择了六个维度为 D=20 和 D=40 的基准函数进行实验,分析和比较了新改进算法的迭代速度和精度。实验结果表明,新改进算法的搜索速度更快、更稳定,可以快速提高种群多样性,找到全局最优解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca76/4886087/167ed69b303b/CIN2016-9820294.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验