Suppr超能文献

利用开放数据预测城市内涝的影响。

Predicting the impact of urban flooding using open data.

作者信息

Tkachenko Nataliya, Procter Rob, Jarvis Stephen

机构信息

Warwick Institute for the Science of Cities , University of Warwick , Coventry CV4 7AL , UK.

Warwick Institute for the Science of Cities, University of Warwick, Coventry CV4 7AL, UK; Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK.

出版信息

R Soc Open Sci. 2016 May 25;3(5):160013. doi: 10.1098/rsos.160013. eCollection 2016 May.

Abstract

This paper aims to explore whether there is a relationship between search patterns for flood risk information on the Web and how badly localities have been affected by flood events. We hypothesize that localities where people stay more actively informed about potential flooding experience less negative impact than localities where people make less effort to be informed. Being informed, of course, does not hold the waters back; however, it may stimulate (or serve as an indicator of) such resilient behaviours as timely use of sandbags, relocation of possessions from basements to upper floors and/or temporary evacuation from flooded homes to alternative accommodation. We make use of open data to test this relationship empirically. Our results demonstrate that although aggregated Web search reflects average rainfall patterns, its eigenvectors predominantly consist of locations with similar flood impacts during 2014-2015. These results are also consistent with statistically significant correlations of Web search eigenvectors with flood warning and incident reporting datasets.

摘要

本文旨在探讨网络上洪水风险信息的搜索模式与各地受洪水事件影响的严重程度之间是否存在关联。我们假设,相比那些人们获取信息积极性较低的地区,在人们更积极了解潜在洪水风险的地区,洪水造成的负面影响更小。当然,了解信息并不能阻挡洪水;然而,它可能会激发(或作为一种指标)诸如及时使用沙袋、将财物从地下室转移到楼上以及/或者从被洪水淹没的房屋临时撤离到其他住处等抗灾行为。我们利用公开数据对这种关系进行实证检验。我们的结果表明,虽然汇总的网络搜索反映了平均降雨模式,但其特征向量主要由2014 - 2015年期间洪水影响相似的地点组成。这些结果也与网络搜索特征向量与洪水预警和事件报告数据集之间具有统计学意义的相关性相一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验