Suppr超能文献

谷歌趋势可改进 2 型糖尿病监测。

Google Trends can improve surveillance of Type 2 diabetes.

机构信息

Warwick Institute for the Science of Cities, University of Warwick, Coventry, CV4 7AL, UK.

Experian, The Sir John Peace Building, Experian Way, NG2 Business Park, Nottingham, NG80 1ZZ, UK.

出版信息

Sci Rep. 2017 Jul 10;7(1):4993. doi: 10.1038/s41598-017-05091-9.

Abstract

Recent studies demonstrate that people are increasingly looking online to assess their health, with reasons varying from personal preferences and beliefs to inability to book a timely appointment with their local medical practice. Records of these activities represent a new source of data about the health of populations, but which is currently unaccounted for by disease surveillance models. This could potentially be useful as evidence of individuals' perception of bodily changes and self-diagnosis of early symptoms of an emerging disease. We make use of the Experian geodemographic Mosaic dataset in order to extract Type 2 diabetes candidate risk variables and compare their temporal relationships with the search keywords, used to describe early symptoms of the disease on Google. Our results demonstrate that Google Trends can detect early signs of diabetes by monitoring combinations of keywords, associated with searches for hypertension treatment and poor living conditions; Combined search semantics, related to obesity, how to quit smoking and improve living conditions (deprivation) can be also employed, however, may lead to less accurate results.

摘要

最近的研究表明,人们越来越倾向于在网上评估自己的健康状况,原因可能是个人偏好和信念,也可能是无法及时预约当地的医疗服务。这些活动记录代表了一种新的人群健康数据来源,但目前疾病监测模型并未将其考虑在内。这可能有助于了解个人对身体变化的感知以及对新兴疾病早期症状的自我诊断。我们利用 Experian 地理人口统计学马赛克数据集提取 2 型糖尿病候选风险变量,并将其与用于在 Google 上描述疾病早期症状的搜索关键字的时间关系进行比较。我们的研究结果表明,通过监测与高血压治疗和不良生活条件相关的关键字组合,Google Trends 可以检测到糖尿病的早期迹象;但是,结合与肥胖、如何戒烟以及改善生活条件(贫困)相关的搜索语义可能会导致结果不够准确。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8686/5504026/c410d57ccc91/41598_2017_5091_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验