UR1 CNRS/Synchrotron SOLEIL, Saint-Aubin, 91192 Gif sur Yvette, France.
Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Bât. 510 , F-91405 Orsay Cedex, France.
Nano Lett. 2017 Apr 12;17(4):2681-2689. doi: 10.1021/acs.nanolett.7b00509. Epub 2017 Mar 30.
The epitaxial graphene buffer layer on the Si face of hexagonal SiC shows a promising band gap, of which the precise origin remains to be understood. In this work, we correlate the electronic to the atomic structure of the buffer layer by combining angle resolved photoemission spectroscopy (ARPES), scanning tunneling microscopy (STM), and high-resolution scanning transmission electron microscopy (HR-STEM). We show that the band structure in the buffer has an electronic periodicity related to the structural periodicity observed in STM images and published X-ray diffraction. Our HR-STEM measurements show the bonding of the buffer layer to the SiC at specific locations separated by 1.5 nm. This is consistent with the quasi 6 × 6 periodic corrugation observed in the STM images. The distance between buffer C and SiC is 1.9 Å in the bonded regions and up to 2.8 Å in the decoupled regions, corresponding to a 0.9 Å corrugation of the buffer layer. The decoupled regions are sp hybridized. Density functional tight binding (DFTB) calculations demonstrate the presence of a gap at the Dirac point everywhere in the buffer layer, even in the decoupled regions where the buffer layer has an atomic structure close to that of graphene. The surface periodicity also promotes band in the superperiodic Brillouin zone edges as seen by photoemission and confirmed by our calculations.
在六方碳化硅(SiC)的 Si 面上外延生长的石墨烯缓冲层具有很有前途的带隙,但其精确起源仍有待理解。在这项工作中,我们通过结合角分辨光电子能谱(ARPES)、扫描隧道显微镜(STM)和高分辨率扫描透射电子显微镜(HR-STEM),将电子结构与缓冲层的原子结构相关联。我们表明,缓冲层的能带结构具有与STM 图像和已发表的 X 射线衍射观察到的结构周期性相关的电子周期性。我们的 HR-STEM 测量表明,缓冲层在 SiC 上的结合位置相隔 1.5nm,与在 STM 图像中观察到的准 6×6 周期性波纹一致。在结合区域,缓冲 C 和 SiC 之间的距离为 1.9Å,在解耦区域可达 2.8Å,对应于缓冲层的 0.9Å 波纹。解耦区域为 sp 杂化。密度泛函紧束缚(DFTB)计算表明,即使在缓冲层具有接近石墨烯的原子结构的解耦区域,缓冲层各处的狄拉克点都存在带隙。表面周期性也促进了超周期布里渊区边缘的能带,这可以通过光发射和我们的计算得到证实。