Suppr超能文献

可打印的酶嵌入材料,用于甲烷到甲醇的转化。

Printable enzyme-embedded materials for methane to methanol conversion.

机构信息

Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551, USA.

Department of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.

出版信息

Nat Commun. 2016 Jun 15;7:11900. doi: 10.1038/ncomms11900.

Abstract

An industrial process for the selective activation of methane under mild conditions would be highly valuable for controlling emissions to the environment and for utilizing vast new sources of natural gas. The only selective catalysts for methane activation and conversion to methanol under mild conditions are methane monooxygenases (MMOs) found in methanotrophic bacteria; however, these enzymes are not amenable to standard enzyme immobilization approaches. Using particulate methane monooxygenase (pMMO), we create a biocatalytic polymer material that converts methane to methanol. We demonstrate embedding the material within a silicone lattice to create mechanically robust, gas-permeable membranes, and direct printing of micron-scale structures with controlled geometry. Remarkably, the enzymes retain up to 100% activity in the polymer construct. The printed enzyme-embedded polymer motif is highly flexible for future development and should be useful in a wide range of applications, especially those involving gas-liquid reactions.

摘要

在温和条件下选择性激活甲烷的工业过程对于控制向环境排放和利用大量新的天然气资源将具有非常重要的价值。在温和条件下唯一能选择性地将甲烷激活并转化为甲醇的催化剂是在甲烷氧化菌中发现的甲烷单加氧酶(MMO);然而,这些酶不适合标准的酶固定化方法。我们使用颗粒状甲烷单加氧酶(pMMO)来创建一种将甲烷转化为甲醇的生物催化聚合物材料。我们证明了将该材料嵌入硅酮晶格中可以制造出机械强度高、透气的膜,并可以直接打印出具有受控几何形状的微米级结构。值得注意的是,在聚合物结构中,酶保留了高达 100%的活性。印刷的酶嵌入聚合物图案具有很高的灵活性,适用于未来的发展,并且应该在广泛的应用中有用,特别是那些涉及气-液反应的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验