Suppr超能文献

转基因植物生产的水解酶以及昆虫肠道来源水解酶在生物燃料方面的潜力。

Transgenic Plant-Produced Hydrolytic Enzymes and the Potential of Insect Gut-Derived Hydrolases for Biofuels.

作者信息

Willis Jonathan D, Mazarei Mitra, Stewart C Neal

机构信息

Department of Plant Sciences, University of TennesseeKnoxville, TN, USA; Oak Ridge National Laboratory, BioEnergy Science CenterOak Ridge, TN, USA.

出版信息

Front Plant Sci. 2016 May 31;7:675. doi: 10.3389/fpls.2016.00675. eCollection 2016.

Abstract

Various perennial C4 grass species have tremendous potential for use as lignocellulosic biofuel feedstocks. Currently available grasses require costly pre-treatment and exogenous hydrolytic enzyme application to break down complex cell wall polymers into sugars that can then be fermented into ethanol. It has long been hypothesized that engineered feedstock production of cell wall degrading (CWD) enzymes would be an efficient production platform for of exogenous hydrolytic enzymes. Most research has focused on plant overexpression of CWD enzyme-coding genes from free-living bacteria and fungi that naturally break down plant cell walls. Recently, it has been found that insect digestive tracts harbor novel sources of lignocellulolytic biocatalysts that might be exploited for biofuel production. These CWD enzyme genes can be located in the insect genomes or in symbiotic microbes. When CWD genes are transformed into plants, negative pleiotropic effects are possible such as unintended cell wall digestion. The use of codon optimization along with organelle and tissue specific targeting improves CWD enzyme yields. The literature teaches several important lessons on strategic deployment of CWD genes in transgenic plants, which is the focus of this review.

摘要

各种多年生C4禾本科植物物种作为木质纤维素生物燃料原料具有巨大潜力。目前可用的禾本科植物需要进行成本高昂的预处理并应用外源水解酶,才能将复杂的细胞壁聚合物分解成糖,进而发酵成乙醇。长期以来,人们一直推测,通过工程化方式生产细胞壁降解(CWD)酶将是一种高效生产外源水解酶的平台。大多数研究都集中在植物过量表达来自自由生活细菌和真菌的CWD酶编码基因,这些细菌和真菌能自然分解植物细胞壁。最近,人们发现昆虫消化道含有新的木质纤维素分解生物催化剂来源,可用于生物燃料生产。这些CWD酶基因可位于昆虫基因组或共生微生物中。当CWD基因转化到植物中时,可能会产生负面的多效性影响,比如意外的细胞壁消化。使用密码子优化以及细胞器和组织特异性靶向可提高CWD酶产量。文献就转基因植物中CWD基因的战略部署给出了几个重要经验教训,这也是本综述的重点。

相似文献

1
Transgenic Plant-Produced Hydrolytic Enzymes and the Potential of Insect Gut-Derived Hydrolases for Biofuels.
Front Plant Sci. 2016 May 31;7:675. doi: 10.3389/fpls.2016.00675. eCollection 2016.
2
Plant biotechnology for lignocellulosic biofuel production.
Plant Biotechnol J. 2014 Dec;12(9):1174-92. doi: 10.1111/pbi.12273. Epub 2014 Oct 20.
4
Engineering grass biomass for sustainable and enhanced bioethanol production.
Planta. 2019 Aug;250(2):395-412. doi: 10.1007/s00425-019-03218-y. Epub 2019 Jun 24.
5
C4 plants as biofuel feedstocks: optimising biomass production and feedstock quality from a lignocellulosic perspective.
J Integr Plant Biol. 2011 Feb;53(2):120-35. doi: 10.1111/j.1744-7909.2010.01023.x.
6
Expression of a hyperthermophilic endoglucanase in hybrid poplar modifies the plant cell wall and enhances digestibility.
Biotechnol Biofuels. 2018 Aug 16;11:225. doi: 10.1186/s13068-018-1224-7. eCollection 2018.
7
Two-year field analysis of reduced recalcitrance transgenic switchgrass.
Plant Biotechnol J. 2014 Sep;12(7):914-24. doi: 10.1111/pbi.12195. Epub 2014 Apr 21.
10
Enhanced cellulose degradation using cellulase-nanosphere complexes.
PLoS One. 2012;7(8):e42116. doi: 10.1371/journal.pone.0042116. Epub 2012 Aug 1.

引用本文的文献

2
Plant Molecular Farming - Integration and Exploitation of Side Streams to Achieve Sustainable Biomanufacturing.
Front Plant Sci. 2019 Jan 18;9:1893. doi: 10.3389/fpls.2018.01893. eCollection 2018.
4
Metabolomics for Plant Improvement: Status and Prospects.
Front Plant Sci. 2017 Aug 7;8:1302. doi: 10.3389/fpls.2017.01302. eCollection 2017.
5
Genetic engineering of grass cell wall polysaccharides for biorefining.
Plant Biotechnol J. 2017 Sep;15(9):1071-1092. doi: 10.1111/pbi.12764. Epub 2017 Jun 30.
6
Molecular chaperones and hypoxic-ischemic encephalopathy.
Neural Regen Res. 2017 Jan;12(1):153-160. doi: 10.4103/1673-5374.199008.

本文引用的文献

1
Insect phylogenomics.
Insect Mol Biol. 2015 Aug;24(4):403-11. doi: 10.1111/imb.12174. Epub 2015 May 12.
3
Brachypodium distachyon and Setaria viridis: Model Genetic Systems for the Grasses.
Annu Rev Plant Biol. 2015;66:465-85. doi: 10.1146/annurev-arplant-042811-105528. Epub 2015 Jan 22.
4
Production of biofuels and biochemicals by in vitro synthetic biosystems: Opportunities and challenges.
Biotechnol Adv. 2015 Nov 15;33(7):1467-83. doi: 10.1016/j.biotechadv.2014.10.009. Epub 2014 Oct 27.
5
Modifying plants for biofuel and biomaterial production.
Plant Biotechnol J. 2014 Dec;12(9):1246-58. doi: 10.1111/pbi.12300.
6
Phylogenomics resolves the timing and pattern of insect evolution.
Science. 2014 Nov 7;346(6210):763-7. doi: 10.1126/science.1257570. Epub 2014 Nov 6.
7
Challenges and advances in the heterologous expression of cellulolytic enzymes: a review.
Biotechnol Biofuels. 2014 Oct 18;7(1):135. doi: 10.1186/s13068-014-0135-5. eCollection 2014.
8
Assessment of field-grown cellulase-expressing corn.
Transgenic Res. 2015 Apr;24(2):185-98. doi: 10.1007/s11248-014-9838-4. Epub 2014 Sep 23.
10
Recombinant hyperthermophilic enzyme expression in plants: a novel approach for lignocellulose digestion.
Trends Biotechnol. 2014 May;32(5):281-9. doi: 10.1016/j.tibtech.2014.03.003. Epub 2014 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验