Suppr超能文献

GcsR是一种类TyrR增强子结合蛋白,可调控铜绿假单胞菌PAO1中甘氨酸裂解系统的表达。

GcsR, a TyrR-Like Enhancer-Binding Protein, Regulates Expression of the Glycine Cleavage System in Pseudomonas aeruginosa PAO1.

作者信息

Sarwar Zaara, Lundgren Benjamin R, Grassa Michael T, Wang Michael X, Gribble Megan, Moffat Jennifer F, Nomura Christopher T

机构信息

Department of Chemistry, State University of New York-College of Environmental Science and Forestry, Syracuse, New York, USA.

Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, New York, USA.

出版信息

mSphere. 2016 Apr 27;1(2). doi: 10.1128/mSphere.00020-16. eCollection 2016 Mar-Apr.

Abstract

Glycine serves as a major source of single carbon units for biochemical reactions within bacterial cells. Utilization of glycine is tightly regulated and revolves around a key group of proteins known as the glycine cleavage system (GCS). Our lab previously identified the transcriptional regulator GcsR (PA2449) as being required for catabolism of glycine in the opportunistic pathogen Pseudomonas aeruginosa PAO1. In an effort to clarify and have an overall better understanding of the role of GcsR in glycine metabolism, a combination of transcriptome sequencing and electrophoretic mobility shift assays was used to identify target genes of this transcriptional regulator. It was found that GcsR binds to an 18-bp consensus sequence (TGTAACG-N4-CGTTCCG) upstream of the gcs2 operon, consisting of the gcvH2, gcvP2, glyA2, sdaA, and gcvT2 genes. The proteins encoded by these genes, namely, the GCS (GcvH2-GcvP2-GcvT2), serine hydroxymethyltransferase (GlyA2), and serine dehydratase (SdaA), form a metabolic pathway for the conversion of glycine into pyruvate, which can enter the central metabolism. GcsR activates transcription of the gcs2 operon in response to glycine. Interestingly, GcsR belongs to a family of transcriptional regulators known as TyrR-like enhancer-binding proteins (EBPs). Until this study, TyrR-like EBPs were only known to function in regulating aromatic amino acid metabolism. GcsR is the founding member of a new class of TyrR-like EBPs that function in the regulation of glycine metabolism. Indeed, homologs of GcsR and its target genes are present in almost all sequenced genomes of the Pseudomonadales order, suggesting that this genetic regulatory mechanism is a common theme for pseudomonads. IMPORTANCE Glycine is required for various cellular functions, including cell wall synthesis, protein synthesis, and the biosynthesis of several important metabolites. Regulating levels of glycine metabolism allows P. aeruginosa to maintain the metabolic flux of glycine through several pathways, including the metabolism of glycine to produce other amino acids, entry into the trichloroacetic acid cycle, and the production of virulence factors such as hydrogen cyanide. In this study, we characterized GcsR, a transcriptional regulator that activates the expression of genes involved in P. aeruginosa PAO1 glycine metabolism. Our work reveals that GcsR is the founding member of a novel class of TyrR-like EBPs that likely regulate glycine metabolism in Pseudomonadales.

摘要

甘氨酸是细菌细胞内生化反应中单一碳单位的主要来源。甘氨酸的利用受到严格调控,且围绕一组关键蛋白质展开,这组蛋白质被称为甘氨酸裂解系统(GCS)。我们实验室之前已确定转录调节因子GcsR(PA2449)是机会致病菌铜绿假单胞菌PAO1中甘氨酸分解代谢所必需的。为了阐明并更好地全面了解GcsR在甘氨酸代谢中的作用,我们结合转录组测序和电泳迁移率变动分析来确定该转录调节因子的靶基因。研究发现,GcsR与gcs2操纵子上游一个18碱基对的共有序列(TGTAACG-N4-CGTTCCG)结合,gcs2操纵子由gcvH2、gcvP2、glyA2、sdaA和gcvT2基因组成。这些基因编码的蛋白质,即GCS(GcvH2-GcvP2-GcvT2)、丝氨酸羟甲基转移酶(GlyA2)和丝氨酸脱水酶(SdaA),形成了一条将甘氨酸转化为丙酮酸的代谢途径,丙酮酸可进入中心代谢。GcsR会响应甘氨酸激活gcs2操纵子的转录。有趣的是,GcsR属于一类被称为类TyrR增强子结合蛋白(EBP)的转录调节因子家族。在本研究之前,人们只知道类TyrR EBP在调节芳香族氨基酸代谢中发挥作用。GcsR是一类在甘氨酸代谢调节中发挥作用的新型类TyrR EBP的首个成员。事实上,在假单胞菌目的几乎所有已测序基因组中都存在GcsR及其靶基因的同源物,这表明这种遗传调控机制是假单胞菌的一个共同特征。重要性 甘氨酸是各种细胞功能所必需的,包括细胞壁合成、蛋白质合成以及几种重要代谢物的生物合成。调节甘氨酸代谢水平能使铜绿假单胞菌通过多种途径维持甘氨酸的代谢通量,这些途径包括甘氨酸代谢以产生其他氨基酸、进入三羧酸循环以及产生如氰化氢等毒力因子。在本研究中,我们对转录调节因子GcsR进行了表征,它能激活铜绿假单胞菌PAO1中参与甘氨酸代谢的基因的表达。我们的工作表明,GcsR是一类新型类TyrR EBP的首个成员,这类蛋白可能在假单胞菌目中调节甘氨酸代谢。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5d2/4894688/e803bd980749/sph0021620750001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验