Department of Biomedical Sciences, University of Cagliari, S.P. 8 km 0.700, I-09042 Monserrato, CA, Italy.
Department of Physics, University of Cagliari, S.P. 8 km 0.700, I-09042 Monserrato, CA, Italy.
Future Med Chem. 2016 Jun;8(10):1047-62. doi: 10.4155/fmc-2016-0038. Epub 2016 Jun 15.
In Gram-negative bacteria, the outer-membrane represents an additional barrier for antibiotics to permeate inside pathogens. Our inability to come up with novel effective antibiotics mostly relies upon insufficient understanding of the molecular basis behind outer-membrane penetration.
Polar antibiotics can permeate through water-filled porins, such as OmpF and OmpC from Escherichia coli. Through molecular modeling, permeation of imipenem and meropenem was found to be strongly dependent upon capability of drugs to properly align their electric dipole to the internal electric field in the restricted region of the pore. Electrostatics differences between OmpF and OmpC, and modifications along a series of OmpC mutants from E. coli-resistant clinical strains identify a 'preorientation' region, which dramatically affects antibiotic pathway.
A novel perspective is presented, suggesting new molecular properties to be included in drug design.
在革兰氏阴性菌中,外膜是抗生素渗透进入病原体的另一个障碍。我们无法开发出新的有效抗生素,主要是因为我们对外膜穿透的分子基础的了解还不够充分。
极性抗生素可以通过充满水的孔道渗透,例如大肠杆菌中的 OmpF 和 OmpC。通过分子建模,发现亚胺培南和美罗培南的渗透强烈依赖于药物将其电偶极正确排列到孔道受限区域内的内部电场的能力。OmpF 和 OmpC 之间的静电差异,以及一系列来自大肠杆菌耐药临床株的 OmpC 突变体的修饰,确定了一个“预定向”区域,该区域显著影响抗生素途径。
提出了一个新的观点,建议在药物设计中加入新的分子特性。