Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University , No. 2999 North Renmin Road, Songjiang, Shanghai 201620, China.
Department of Biomedical Engineering, Cornell University , Ithaca, New York 14850, United States.
ACS Appl Mater Interfaces. 2016 Jul 6;8(26):16950-60. doi: 10.1021/acsami.6b05199. Epub 2016 Jun 23.
Nanofibrous scaffolds with defined architectures and anisotropic mechanical properties are attractive for many tissue engineering and regenerative medicine applications. Here, a novel electrospinning system is developed and implemented to fabricate continuous processable uniaxially aligned nanofiber yarns (UANY). UANY were processed into fibrous tissue scaffolds with defined anisotropic material properties using various textile-forming technologies, i.e., braiding, weaving, and knitting techniques. UANY braiding dramatically increased overall stiffness and strength compared to the same number of UANY unbraided. Human adipose derived stem cells (HADSC) cultured on UANY or woven and knitted 3D scaffolds aligned along local fiber direction and were >90% viable throughout 21 days. Importantly, UANY supported biochemical induction of HADSC differentiation toward smooth muscle and osteogenic lineages. Moreover, we integrated an anisotropic woven fiber mesh within a bioactive hydrogel to mimic the complex microstructure and mechanical behavior of valve tissues. Human aortic valve interstitial cells (HAVIC) and human aortic root smooth muscle cells (HASMC) were separately encapsulated within hydrogel/woven fabric composite scaffolds for generating scaffolds with anisotropic biomechanics and valve ECM like microenvironment for heart valve tissue engineering. UANY have great potential as building blocks for generating fiber-shaped tissues or tissue microstructures with complex architectures.
具有特定结构和各向异性机械性能的纳米纤维支架在许多组织工程和再生医学应用中具有吸引力。在这里,开发并实施了一种新型的静电纺丝系统,以制造可连续加工的各向异性纳米纤维纱线(UANY)。使用各种纺织成型技术,如编织、编织和针织技术,将 UANY 加工成具有定义各向异性材料性能的纤维组织支架。与相同数量的未编织 UANY 相比,UANY 编织显着提高了整体刚度和强度。在 UANY 或编织和针织的 3D 支架上培养的人脂肪来源干细胞(HADSC)沿局部纤维方向排列,并且在 21 天内保持>90%的活力。重要的是,UANY 支持 HADSC 向平滑肌和成骨谱系的生化诱导分化。此外,我们在生物活性水凝胶内集成了各向异性的编织纤维网,以模拟瓣膜组织的复杂微观结构和力学行为。将人主动脉瓣间质细胞(HAVIC)和人主动脉平滑肌细胞(HASMC)分别包封在水凝胶/机织织物复合支架内,以生成具有各向异性生物力学和瓣膜 ECM 样微环境的心脏瓣膜组织工程支架。UANY 具有作为生成具有复杂结构的纤维状组织或组织微结构的构建块的巨大潜力。
ACS Appl Mater Interfaces. 2016-6-23
Acta Biomater. 2017-3-15
ACS Biomater Sci Eng. 2023-11-13
Methods Mol Biol. 2011
Tissue Eng Part A. 2024-3
Nanomaterials (Basel). 2023-3-23
Materials (Basel). 2022-10-14
Nanomaterials (Basel). 2022-8-25
J Funct Biomater. 2022-7-16