文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

交织排列的导电纳米纤维纱/水凝胶复合支架用于构建工程化 3D 心脏各向异性

Interwoven Aligned Conductive Nanofiber Yarn/Hydrogel Composite Scaffolds for Engineered 3D Cardiac Anisotropy.

机构信息

Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University , Xi'an 710049, China.

Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States.

出版信息

ACS Nano. 2017 Jun 27;11(6):5646-5659. doi: 10.1021/acsnano.7b01062. Epub 2017 Jun 7.


DOI:10.1021/acsnano.7b01062
PMID:28590127
Abstract

Mimicking the anisotropic cardiac structure and guiding 3D cellular orientation play a critical role in designing scaffolds for cardiac tissue regeneration. Significant advances have been achieved to control cellular alignment and elongation, but it remains an ongoing challenge for engineering 3D cardiac anisotropy using these approaches. Here, we present a 3D hybrid scaffold based on aligned conductive nanofiber yarns network (NFYs-NET, composition: polycaprolactone, silk fibroin, and carbon nanotubes) within a hydrogel shell for mimicking the native cardiac tissue structure, and further demonstrate their great potential for engineering 3D cardiac anisotropy for cardiac tissue engineering. The NFYs-NET structures are shown to control cellular orientation and enhance cardiomyocytes (CMs) maturation. 3D hybrid scaffolds were then fabricated by encapsulating NFYs-NET layers within hydrogel shell, and these 3D scaffolds performed the ability to promote aligned and elongated CMs maturation on each layer and individually control cellular orientation on different layers in a 3D environment. Furthermore, endothelialized myocardium was constructed by using this hybrid strategy via the coculture of CMs on NFYs-NET layer and endothelial cells within hydrogel shell. Therefore, these 3D hybrid scaffolds, containing NFYs-NET layer inducing cellular orientation, maturation, and anisotropy and hydrogel shell providing a suitable 3D environment for endothelialization, has great potential in engineering 3D cardiac anisotropy.

摘要

模拟各向异性的心脏结构和引导 3D 细胞方向在设计用于心脏组织再生的支架方面起着关键作用。已经取得了重大进展来控制细胞的排列和伸长,但使用这些方法来构建 3D 心脏各向异性仍然是一个持续的挑战。在这里,我们提出了一种基于排列的导电纳米纤维纱线网络 (NFYs-NET,组成:聚己内酯、丝素蛋白和碳纳米管) 的 3D 混合支架,用于模拟天然心脏组织结构,并进一步证明了它们在工程 3D 心脏各向异性方面用于心脏组织工程的巨大潜力。结果表明,NFYs-NET 结构可控制细胞方向并增强心肌细胞 (CMs) 的成熟。然后通过将 NFYs-NET 层封装在水凝胶壳内来制造 3D 混合支架,这些 3D 支架具有在每个层上促进排列和伸长的 CMs 成熟的能力,并在 3D 环境中单独控制不同层上的细胞方向。此外,通过在 NFYs-NET 层上培养 CMs 和在水凝胶壳内培养内皮细胞,使用这种混合策略构建了内皮化的心肌。因此,这些 3D 混合支架包含 NFYs-NET 层,可诱导细胞方向、成熟和各向异性,以及水凝胶壳提供适合内皮化的 3D 环境,在构建 3D 心脏各向异性方面具有巨大的潜力。

相似文献

[1]
Interwoven Aligned Conductive Nanofiber Yarn/Hydrogel Composite Scaffolds for Engineered 3D Cardiac Anisotropy.

ACS Nano. 2017-6-7

[2]
Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation.

Acta Biomater. 2019-6-29

[3]
Nanofiber Yarn/Hydrogel Core-Shell Scaffolds Mimicking Native Skeletal Muscle Tissue for Guiding 3D Myoblast Alignment, Elongation, and Differentiation.

ACS Nano. 2015-8-19

[4]
Nanofiber-structured hydrogel yarns with pH-response capacity and cardiomyocyte-drivability for bio-microactuator application.

Acta Biomater. 2017-9-15

[5]
A radial 3D polycaprolactone nanofiber scaffold modified by biomineralization and silk fibroin coating promote bone regeneration in vivo.

Int J Biol Macromol. 2021-3-1

[6]
Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.

Acta Biomater. 2017-4-1

[7]
Electrohydrodynamic 3D printing of layer-specifically oriented, multiscale conductive scaffolds for cardiac tissue engineering.

Nanoscale. 2019-8-15

[8]
Electrospun aligned poly(ε-caprolactone) nanofiber yarns guiding 3D organization of tendon stem/progenitor cells in tenogenic differentiation and tendon repair.

Front Bioeng Biotechnol. 2022-8-30

[9]
Tough and flexible CNT-polymeric hybrid scaffolds for engineering cardiac constructs.

Biomaterials. 2014-8

[10]
Wet-electrospun PHBV nanofiber reinforced carboxymethyl chitosan-silk hydrogel composite scaffolds for articular cartilage repair.

J Biomater Appl. 2020

引用本文的文献

[1]
Cardiac Tissue Bioprinting: Integrating Structure and Functions Through Biomimetic Design, Bioinks, and Stimulation.

Gels. 2025-7-31

[2]
Nanomaterials for smart wearable fibers and textiles: A critical review.

iScience. 2025-7-16

[3]
Advancing organ-on-chip systems: the role of microfluidics in neuro-cardiac research.

Curr Res Pharmacol Drug Discov. 2025-7-3

[4]
Electrically conductive biopolymer-based hydrogels and fibrous materials fabricated using 3D printing and electrospinning for cardiac tissue engineering.

Bioact Mater. 2025-6-9

[5]
Advancing electrospinning towards the future of biomaterials in biomedical engineering.

Regen Biomater. 2025-4-29

[6]
Living Nanofiber-Enabled Cardiac Patches for Myocardial Injury.

JACC Basic Transl Sci. 2025-2

[7]
Novel Electroactive Therapeutic Platforms for Cardiac Arrhythmia Management.

Adv Sci (Weinh). 2025-6

[8]
A bibliometric analysis of hydrogel research in various fields: the trends and evolution of hydrogel application.

J Nanobiotechnology. 2025-1-31

[9]
Advancements in textile techniques for cardiovascular tissue replacement and repair.

APL Bioeng. 2024-10-17

[10]
Electrospun Smart Hybrid Nanofibers for Multifaceted Applications.

Macromol Rapid Commun. 2024-10-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索