Suppr超能文献

Intervesicular exchange of lipids with weak acid and weak base characteristics: influence of transmembrane pH gradients.

作者信息

Eastman S J, Wilschut J, Cullis P R, Hope M J

机构信息

Biochemistry Department, University of British Columbia, Vancouver, Canada.

出版信息

Biochim Biophys Acta. 1989 Jun 6;981(2):178-84. doi: 10.1016/0005-2736(89)90026-6.

Abstract

Transmembrane pH gradients have previously been shown to induce an asymmetric transmembrane distribution of simple lipids that exhibit weak acid or basic characteristics (Hope, M.J. and Cullis, P.R. (1987) J. Biol. Chem. 262, 4360-4366). In the present study we have examined the influence of proton gradients on the inter-vesicular exchange of stearylamine and oleic acid. We show that vesicles containing stearylamine immediately aggregate with vesicles containing phosphatidylserine and that disaggregation occurs subsequently as stearylamine equilibrates between the two vesicle populations. Despite visible flocculation during the aggregation phase, vesicle integrity is maintained. Stearylamine is the only lipid to exchange, fusion does not occur and vesicles are able to maintain a proton gradient. When stearylamine is sequestered to the inner monolayer in response to a transmembrane pH gradient (inside acidic) aggregation is not observed and diffusion of stearylamine to acceptor vesicles is greatly reduced. The ability of delta pH-dependent lipid asymmetry to modulate lipid exchange is also demonstrated for fatty acids. Oleic acid can be induced to transfer from one population of vesicles to another by maintaining a basic interior pH in the acceptor vesicles. Moreover, it is shown that the same acceptor vesicles are capable of depleting serum albumin of bound fatty acid. These results are discussed with respect to the mechanism and modulation of lipid flow between membranes both in vitro and in vivo.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验