Suppr超能文献

利用声波在芯片上制备尺寸可控的液态金属微滴

On-Chip Production of Size-Controllable Liquid Metal Microdroplets Using Acoustic Waves.

作者信息

Tang Shi-Yang, Ayan Bugra, Nama Nitesh, Bian Yusheng, Lata James P, Guo Xiasheng, Huang Tony Jun

机构信息

Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA.

Key Laboratory of Modern Acoustics (MOE), Department of Physics, Nanjing University, Nanjing, 210093, China.

出版信息

Small. 2016 Jul;12(28):3861-9. doi: 10.1002/smll.201600737. Epub 2016 Jun 16.

Abstract

Micro- to nanosized droplets of liquid metals, such as eutectic gallium indium (EGaIn) and Galinstan, have been used for developing a variety of applications in flexible electronics, sensors, catalysts, and drug delivery systems. Currently used methods for producing micro- to nanosized droplets of such liquid metals possess one or several drawbacks, including the lack in ability to control the size of the produced droplets, mass produce droplets, produce smaller droplet sizes, and miniaturize the system. Here, a novel method is introduced using acoustic wave-induced forces for on-chip production of EGaIn liquid-metal microdroplets with controllable size. The size distribution of liquid metal microdroplets is tuned by controlling the interfacial tension of the metal using either electrochemistry or electrocapillarity in the acoustic field. The developed platform is then used for heavy metal ion detection utilizing the produced liquid metal microdroplets as the working electrode. It is also demonstrated that a significant enhancement of the sensing performance is achieved by introducing acoustic streaming during the electrochemical experiments. The demonstrated technique can be used for developing liquid-metal-based systems for a wide range of applications.

摘要

诸如共晶镓铟(EGaIn)和镓铟锡合金等微纳米级液态金属液滴已被用于开发柔性电子、传感器、催化剂和药物输送系统等多种应用。目前用于生产此类液态金属微纳米级液滴的方法存在一个或多个缺点,包括无法控制所产生液滴的大小、批量生产液滴、生产更小的液滴尺寸以及使系统小型化。在此,介绍一种利用声波诱导力在芯片上生产尺寸可控的EGaIn液态金属微滴的新方法。通过在声场中利用电化学或电毛细作用控制金属的界面张力来调节液态金属微滴的尺寸分布。然后将所开发的平台用于重金属离子检测,利用所产生的液态金属微滴作为工作电极。还证明了在电化学实验过程中引入声流可显著提高传感性能。所展示的技术可用于开发适用于广泛应用的基于液态金属的系统。

相似文献

1
On-Chip Production of Size-Controllable Liquid Metal Microdroplets Using Acoustic Waves.
Small. 2016 Jul;12(28):3861-9. doi: 10.1002/smll.201600737. Epub 2016 Jun 16.
2
Microfluidic Mass Production of Stabilized and Stealthy Liquid Metal Nanoparticles.
Small. 2018 May;14(21):e1800118. doi: 10.1002/smll.201800118. Epub 2018 Apr 22.
5
Liquid-Metal Microdroplets Formed Dynamically with Electrical Control of Size and Rate.
Adv Mater. 2016 Jan 27;28(4):604-9. doi: 10.1002/adma.201503875. Epub 2015 Nov 25.
6
Effect of Surrounding Solvents on Interfacial Behavior of Gallium-Based Liquid Metal Droplets.
Materials (Basel). 2022 Jan 18;15(3):706. doi: 10.3390/ma15030706.
7
A Flexible Loudspeaker Using the Movement of Liquid Metal Induced by Electrochemically Controlled Interfacial Tension.
Small. 2019 Dec;15(51):e1905263. doi: 10.1002/smll.201905263. Epub 2019 Nov 25.
8
Fabrication of a Flexible Photodetector Based on a Liquid Eutectic Gallium Indium.
Materials (Basel). 2020 Nov 18;13(22):5210. doi: 10.3390/ma13225210.
9
Steering liquid metal flow in microchannels using low voltages.
Lab Chip. 2015 Oct 7;15(19):3905-11. doi: 10.1039/c5lc00742a.

引用本文的文献

1
Droplet Detection and Sorting System in Microfluidics: A Review.
Micromachines (Basel). 2022 Dec 30;14(1):103. doi: 10.3390/mi14010103.
2
Liquid Metal Patterning and Unique Properties for Next-Generation Soft Electronics.
Adv Sci (Weinh). 2023 Feb;10(6):e2205795. doi: 10.1002/advs.202205795. Epub 2023 Jan 15.
3
Acoustic Wave-Driven Liquid Metal Expansion.
Micromachines (Basel). 2022 Apr 28;13(5):685. doi: 10.3390/mi13050685.
4
High Frequency Sonoprocessing: A New Field of Cavitation-Free Acoustic Materials Synthesis, Processing, and Manipulation.
Adv Sci (Weinh). 2020 Nov 23;8(1):2001983. doi: 10.1002/advs.202001983. eCollection 2020 Jan.
5
Biomedical Applications of Liquid Metal Nanoparticles: A Critical Review.
Biosensors (Basel). 2020 Nov 30;10(12):196. doi: 10.3390/bios10120196.
6
Modular and Integrated Systems for Nanoparticle and Microparticle Synthesis-A Review.
Biosensors (Basel). 2020 Nov 3;10(11):165. doi: 10.3390/bios10110165.
8
Attributes, Fabrication, and Applications of Gallium-Based Liquid Metal Particles.
Adv Sci (Weinh). 2020 Apr 22;7(12):2000192. doi: 10.1002/advs.202000192. eCollection 2020 Jun.
10

本文引用的文献

1
Rotational manipulation of single cells and organisms using acoustic waves.
Nat Commun. 2016 Mar 23;7:11085. doi: 10.1038/ncomms11085.
2
Transformable liquid-metal nanomedicine.
Nat Commun. 2015 Dec 2;6:10066. doi: 10.1038/ncomms10066.
3
Liquid-Metal Microdroplets Formed Dynamically with Electrical Control of Size and Rate.
Adv Mater. 2016 Jan 27;28(4):604-9. doi: 10.1002/adma.201503875. Epub 2015 Nov 25.
4
Handwritten, Soft Circuit Boards and Antennas Using Liquid Metal Nanoparticles.
Small. 2015 Dec 22;11(48):6397-403. doi: 10.1002/smll.201502692. Epub 2015 Nov 16.
5
Generation of catalytically active materials from a liquid metal precursor.
Chem Commun (Camb). 2015 Sep 25;51(74):14026-9. doi: 10.1039/c5cc05246g.
6
Stretchable Loudspeaker using Liquid Metal Microchannel.
Sci Rep. 2015 Jul 16;5:11695. doi: 10.1038/srep11695.
7
An acoustofluidic sputum liquefier.
Lab Chip. 2015 Aug 7;15(15):3125-31. doi: 10.1039/c5lc00539f.
9
Mechanically sintered gallium-indium nanoparticles.
Adv Mater. 2015 Apr 8;27(14):2355-60. doi: 10.1002/adma.201404790. Epub 2015 Feb 27.
10
Liquid-phase metal inclusions for a conductive polymer composite.
Adv Mater. 2015 Mar 18;27(11):1928-32. doi: 10.1002/adma.201405256. Epub 2015 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验