Jiang Weiping, Zhou Iris Yuwen, Wen Lingyi, Zhou Xin, Sun Phillip Zhe
Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China.
Contrast Media Mol Imaging. 2016 Sep;11(5):415-423. doi: 10.1002/cmmi.1699. Epub 2016 Jun 16.
Chemical exchange saturation transfer (CEST) MRI is sensitive to dilute labile protons and microenvironmental properties, augmenting routine relaxation-based MRI. Recent developments of quantitative CEST (qCEST) analysis such as omega plots and RF-power based ratiometric calculation have extended our ability to elucidate the underlying CEST system beyond the simplistic apparent CEST measurement. CEST MRI strongly varies with experimental factors, including the RF irradiation level and duration as well as repetition time and flip angle. In addition, the CEST MRI effect is typically small, and experimental optimization strategies have to be carefully evaluated in order to enhance the CEST imaging sensitivity. Although routine CEST MRI has been optimized largely based on maximizing the magnitude of the CEST effect, the CEST signal-to-noise (SNR) efficiency provides a more suitable optimization index, particularly when the scan time is constrained. Herein, we derive an analytical solution of the CEST effect that takes into account key experimental parameters including repetition time, imaging flip angle and RF irradiation level, and solve its SNR efficiency. The solution expedites CEST imaging sensitivity calculation, substantially faster than the Bloch-McConnell equation-based numerical simulation approach. In addition, the analytical solution-based SNR formula enables the exhaustive optimization of CEST MRI, which simultaneously predicts multiple optimal parameters such as repetition time, flip angle and RF saturation level based on the chemical shift and exchange rate. The sensitivity efficiency-based optimization approach could simplify and guide imaging of CEST agents, including glycogen, glucose, creatine, gamma-aminobutyric acid and glutamate. Copyright © 2016 John Wiley & Sons, Ltd.
化学交换饱和转移(CEST)磁共振成像(MRI)对稀释的不稳定质子和微环境特性敏感,可增强基于常规弛豫的MRI。定量CEST(qCEST)分析的最新进展,如ω图和基于射频功率的比率计算,扩展了我们在简单的表观CEST测量之外阐明潜在CEST系统的能力。CEST MRI会因实验因素而有很大差异,包括射频照射水平和持续时间以及重复时间和翻转角。此外,CEST MRI效应通常较小,必须仔细评估实验优化策略以提高CEST成像灵敏度。尽管常规CEST MRI在很大程度上已基于最大化CEST效应的幅度进行了优化,但CEST信号噪声(SNR)效率提供了更合适的优化指标,尤其是在扫描时间受限的情况下。在此,我们推导了一个考虑重复时间、成像翻转角和射频照射水平等关键实验参数的CEST效应解析解,并求解其SNR效率。该解加快了CEST成像灵敏度的计算,比基于布洛赫 - 麦康奈尔方程的数值模拟方法快得多。此外,基于解析解的SNR公式能够对CEST MRI进行详尽优化,可根据化学位移和交换率同时预测多个最优参数,如重复时间、翻转角和射频饱和水平。基于灵敏度效率的优化方法可以简化并指导包括糖原、葡萄糖、肌酸、γ-氨基丁酸和谷氨酸在内的CEST造影剂成像。版权所有© 2016约翰威立父子有限公司。