Suppr超能文献

有机光伏界面超快电荷转移:几何和功能化效应。

Ultrafast charge-transfer in organic photovoltaic interfaces: geometrical and functionalization effects.

机构信息

Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA.

出版信息

Nanoscale. 2016 Sep 21;8(35):15902-10. doi: 10.1039/c6nr02857h. Epub 2016 Jun 17.

Abstract

Understanding the microscopic mechanisms of electronic excitation in organic photovoltaic cells is a challenging problem in the design of efficient devices capable of performing sunlight harvesting. Here we develop and apply an ab initio approach based on time-dependent density functional theory and Ehrenfest dynamics to investigate photoinduced charge transfer in small organic molecules. Our calculations include mixed quantum-classical dynamics with ions moving classically and electrons quantum mechanically, where no experimental external parameter other than the material geometry is required. We show that the behavior of photocarriers in zinc phthalocyanine (ZnPc) and C60 systems, an effective prototype system for organic solar cells, is sensitive to the atomic orientation of the donor and the acceptor units as well as the functionalization of covalent molecules at the interface. In particular, configurations with the ZnPc molecules facing on C60 facilitate charge transfer between substrate and molecules that occurs within 200 fs. In contrast, configurations where ZnPc is tilted above C60 present extremely low carrier injection efficiency even at longer times as an effect of the larger interfacial potential level offset and higher energetic barrier between the donor and acceptor molecules. An enhancement of charge injection into C60 at shorter times is observed as binding groups connect ZnPc and C60 in a dyad system. Our results demonstrate a promising way of designing and controlling photoinduced charge transfer on the atomic level in organic devices that would lead to efficient carrier separation and maximize device performance.

摘要

理解有机光伏电池中电子激发的微观机制是设计能够进行阳光收集的高效器件的一个具有挑战性的问题。在这里,我们开发并应用了一种基于含时密度泛函理论和 Ehrenfest 动力学的从头算方法来研究小分子中的光致电荷转移。我们的计算包括离子经典运动和电子量子力学运动的混合量子经典动力学,其中除了材料几何形状之外,不需要任何其他实验外部参数。我们表明,锌酞菁(ZnPc)和 C60 体系中的光载流子行为(有机太阳能电池的有效原型体系)对给体和受体单元的原子取向以及界面处共价分子的功能化敏感。特别是,ZnPc 分子面向 C60 的构型有利于在 200fs 内发生在基底和分子之间的电荷转移。相比之下,ZnPc 在 C60 上方倾斜的构型即使在较长时间内也表现出极低的载流子注入效率,这是由于界面势垒较大和给体与受体分子之间的能垒较高所致。在二联体系统中,连接 ZnPc 和 C60 的结合基团会观察到短时间内 C60 中的电荷注入增强。我们的结果表明,在有机器件中从原子水平上设计和控制光致电荷转移的一种有前途的方法,这将导致有效的载流子分离并最大限度地提高器件性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验