Suppr超能文献

等离子体纳米颗粒在细胞环境中的光学性质变化可通过纳米颗粒的聚乙二醇化和血清条件进行调节。

Changes in Optical Properties of Plasmonic Nanoparticles in Cellular Environments are Modulated by Nanoparticle PEGylation and Serum Conditions.

机构信息

Department of Bioengineering, Rice University, Houston, 77005, TX, USA.

Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, 92037, CA, USA.

出版信息

Nanoscale Res Lett. 2016 Dec;11(1):303. doi: 10.1186/s11671-016-1524-4. Epub 2016 Jun 18.

Abstract

When plasmonic nanoparticles (NPs) are internalized by cells and agglomerate within intracellular vesicles, their optical spectra can shift and broaden as a result of plasmonic coupling of NPs in close proximity to one another. For such optical changes to be accounted for in the design of plasmonic NPs for light-based biomedical applications, quantitative design relationships between designable factors and spectral shifts need to be established. Here we begin building such a framework by investigating how functionalization of gold NPs (AuNPs) with biocompatible poly(ethylene) glycol (PEG), and the serum conditions in which the NPs are introduced to cells impact the optical changes exhibited by NPs in a cellular context. Utilizing darkfield hyperspectral imaging, we find that PEGylation decreases the spectral shifting and spectral broadening experienced by 100 nm AuNPs following uptake by Sk-Br-3 cells, but up to a 33 ± 12 nm shift in the spectral peak wavelength can still occur. The serum protein-containing biological medium also modulates the spectral changes experienced by cell-exposed NPs through the formation of a protein corona on the surface of NPs that mediates NP interactions with cells: PEGylated AuNPs exposed to cells in serum-free conditions experience greater spectral shifts than in serum-containing environments. Moreover, increased concentrations of serum (10, 25, or 50 %) result in the formation of smaller intracellular NP clusters and correspondingly reduced spectral shifts after 5 and 10 h NP-cell exposure. However, after 24 h, NP cluster size and spectral shifts are comparable and become independent of serum concentration. By elucidating the impact of PEGylation and serum concentration on the spectral changes experienced by plasmonic NPs in cells, this study provides a foundation for the optical engineering of plasmonic NPs for use in biomedical environments.

摘要

当等离子体纳米粒子 (NPs) 被细胞内吞并在细胞内囊泡内聚集时,由于彼此靠近的 NPs 之间的等离子体耦合,它们的光学光谱会发生移动和展宽。为了在基于光的生物医学应用中设计等离子体 NPs 时考虑到这些光学变化,需要建立设计因素与光谱移动之间的定量设计关系。在这里,我们通过研究金 NPs (AuNPs) 与生物相容性聚乙二醇 (PEG) 的功能化以及 NPs 引入细胞的血清条件如何影响 NPs 在细胞环境中表现出的光学变化,开始构建这样的框架。利用暗场高光谱成像,我们发现 PEG 化会降低 100nm AuNPs 被 Sk-Br-3 细胞摄取后经历的光谱移动和光谱展宽,但光谱峰值波长仍可发生高达 33 ± 12nm 的移动。含血清蛋白的生物介质还通过在 NPs 表面形成蛋白质冠来调节细胞暴露的 NPs 经历的光谱变化,从而介导 NP 与细胞的相互作用:在无血清条件下暴露于细胞的 PEG 化 AuNPs 经历的光谱移动大于在含血清环境中。此外,增加血清浓度(10%、25%或 50%)会导致细胞内 NP 簇的形成更小,并且在 NP-细胞暴露 5 和 10 小时后相应地减少光谱移动。然而,24 小时后,NP 簇大小和光谱移动是可比的,并且独立于血清浓度。通过阐明 PEG 化和血清浓度对等离子体 NPs 在细胞中经历的光谱变化的影响,本研究为生物医学环境中使用的等离子体 NPs 的光学工程提供了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5746/4912538/470fa098003e/11671_2016_1524_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验