Chen Allen L, Hu Ying S, Jackson Meredith A, Lin Adam Y, Young Joseph K, Langsner Robert J, Drezek Rebekah A
Department of Bioengineering, Rice University, Houston, TX 77005, USA.
Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
Nanoscale Res Lett. 2014 Aug 31;9(1):454. doi: 10.1186/1556-276X-9-454. eCollection 2014.
Metal nanoparticles (NPs) scatter and absorb light in precise, designable ways, making them agile candidates for a variety of biomedical applications. When NPs are introduced to a physiological environment and interact with cells, their physicochemical properties can change as proteins adsorb on their surface and they agglomerate within intracellular endosomal vesicles. Since the plasmonic properties of metal NPs are dependent on their geometry and local environment, these physicochemical changes may alter the NPs' plasmonic properties, on which applications such as plasmonic photothermal therapy and photonic gene circuits are based. Here we systematically study and quantify how metal NPs' optical spectra change upon introduction to a cellular environment in which NPs agglomerate within endosomal vesicles. Using darkfield hyperspectral imaging, we measure changes in the peak wavelength, broadening, and distribution of 100-nm spherical gold NPs' optical spectra following introduction to human breast adenocarcinoma Sk-Br-3 cells as a function of NP exposure dose and time. On a cellular level, spectra shift up to 78.6 ± 23.5 nm after 24 h of NP exposure. Importantly, spectra broaden with time, achieving a spectral width of 105.9 ± 11.7 nm at 95% of the spectrum's maximum intensity after 24 h. On an individual intracellular NP cluster (NPC) level, spectra also show significant shifting, broadening, and heterogeneity after 24 h. Cellular transmission electron microscopy (TEM) and electromagnetic simulations of NPCs support the trends in spectral changes we measured. These quantitative data can help guide the design of metal NPs introduced to cellular environments in plasmonic NP-mediated biomedical technologies.
金属纳米颗粒(NPs)以精确、可设计的方式散射和吸收光,使其成为各种生物医学应用的理想候选者。当纳米颗粒被引入生理环境并与细胞相互作用时,其物理化学性质会发生变化,因为蛋白质会吸附在其表面,并且它们会在细胞内的内体小泡中聚集。由于金属纳米颗粒的等离子体特性取决于其几何形状和局部环境,这些物理化学变化可能会改变纳米颗粒的等离子体特性,而等离子体光热疗法和光子基因电路等应用正是基于这些特性。在这里,我们系统地研究并量化了金属纳米颗粒在引入到内体小泡中聚集的细胞环境后其光谱是如何变化的。使用暗场高光谱成像,我们测量了将100纳米球形金纳米颗粒引入人乳腺腺癌Sk-Br-3细胞后,其光谱的峰值波长、展宽和分布随纳米颗粒暴露剂量和时间的变化。在细胞水平上,纳米颗粒暴露24小时后,光谱最多可偏移78.6±23.5纳米。重要的是,光谱随时间展宽,在24小时后,在光谱最大强度的95%处达到105.9±11.7纳米的光谱宽度。在单个细胞内纳米颗粒簇(NPC)水平上,24小时后光谱也显示出显著的偏移、展宽和异质性。细胞透射电子显微镜(TEM)和NPC的电磁模拟支持了我们测量的光谱变化趋势。这些定量数据有助于指导在等离子体纳米颗粒介导的生物医学技术中引入细胞环境的金属纳米颗粒的设计。